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1. Introduction 

Modeling acoustic propagation conditions is an important issue in underwater acoustics 
and there exist several mathematical/numerical models based on different approaches. Some 
of the most used approaches are based on ray theory, modal expansion and wave number 
integration techniques. Ray acoustics and ray tracing techniques are the most intuitive and 
often the simplest means for modeling sound propagation in the sea. Ray acoustics is based 
on the assumption that sound propagates along rays that are normal to wave fronts, the 
surfaces of constant phase of the acoustic waves. When generated from a point source in a 
medium with constant sound speed, the wave fronts form surfaces that are concentric 
circles, and the sound follows straight line paths that radiate out from the sound source. If 
the speed of sound is not constant, the rays follow curved paths rather than straight ones. 
The computational technique known as ray tracing is a method used to calculate the 
trajectories of the ray paths of sound from the source.  

Ray theory is derived from the wave equation when some simplifying assumptions are 
introduced and the method is essentially a high-frequency approximation. The method is 
sufficiently accurate for applications involving echo sounders, sonar, and communications 
systems for short and medium short distances. These devices normally use frequencies that 
satisfy the high frequency conditions. This article demonstrates that ray theory also can be 
successfully applied for much lower frequencies approaching the regime of seismic 
frequencies. 

This article presents classical ray theory and demonstrates that ray theory gives a valuable 
insight and physical picture of how sound propagates in inhomogeneous media. However, 
ray theory has limitations and may not be valid for precise predictions of sound levels, 
especially in situations where refraction effects and focusing of sound are important. There 
exist corrective measures that can be used to improve classical ray theory, but these are not 
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discussed in detail here. Recommended alternative readings include the books. [1-4] and the 
articles [5-6]. 

A number of realistic examples and cases are presented with the objective to describe some 
of the most important aspects of sound propagation in the oceans. This includes the effects 
of geographical and oceanographic seasonal changes and how the geoacoustic properties of 
the sea bottom may limit the propagation ranges, especially at low frequencies. The 
examples are based on experience from modeling sonar systems, underwater acoustic 
communication links and propagation of low frequency noise in the oceans. There exist a 
number of ray trace models, some are tuned to specific applications, and others are more 
general. In this chapter the applications and use of ray theory are illustrated by using Plane 
Ray, a ray tracing program developed by the author, for modeling underwater acoustic 
propagation with moderately range-varying bathymetry over layered bottom with a thin 
fluid sedimentary layer over a solid half with arbitrary geo-acoustic properties. However, 
the discussion is quite general and does not depend on the actual implementation of the 
theory. 

2. Theory of ray acoustics 

The theory of ray acoustics can be found in most books and [1-4] will not be repeated here, 
but instead we follow a heuristic approach based on Snell’s law, which is expressed by. 
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Figure 1 shows a small segment of a ray path and the coordinate system. The segment has 
horizontal and vertical components dz and dr, respectively, and has the angle with the 
horizontal plane. When the speed of sound varies with depth the ray paths will bend and 
the rays propagate along curved paths. The radius of curvature R is defined as the ratio 
between an increment in the arc length and an increment in the angle 
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Figure 1 shows that the radius of curvature is  
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When the sound speed varies with depth the ray angle  is a function of depth according to 
Snell’s law. Taking the derivative of Eq. (3) with respect to gives the ray’s radius of 
curvature at depth z expressed as 
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The ray parameter  is defined in Eq. (1) and g(z) is the sound speed gradient. 
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At any point in space, the ray curvature is therefore given by the ray parameter  and the 
local value of the sound speed gradient g(z). The positive or negative sign of the gradient 
determines whether the sign of R is negative or positive, and thereby determines if the ray 
path curves downward or upward.  

A ray with horizontal angle in strikes a plane with inclination , the reflected ray is changed 
to out. 

 
Figure 1. A small segment of a ray path in a isotropic medium with arc length ds. 

 
Figure 2. A ray with horizontal angle in strikes a plane with inclination , the reflected ray is changed 
to  out. 

The ray parameter is not constant when the bathymetry varies with range. The change in ray 
direction is illustrated in Figure 2 showing that after reflection the angle in of an incoming 
ray is increased by twice the bottom inclination angle . 
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Consequently, after the ray is reflected, its ray parameter must change from in to out, which 
is expressed as 
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The coordinates of a ray, starting with the angle 1 at the point (r1,z1), where the sound speed 
is c1, as shown in Figure 3. For the coordinates of the running point at (r2, z2) along the ray 
path, the horizontal distance is  

 
 

 
 

 
 

2 2 2

1 1 1

2 1 2 2 2

cos
= .

tan 1 cos 1

 
  

  
 

  
z z z

z z z

z dz c z dzdz
r r

z z c z
 (7) 

The travel time between the two points is obtained by integrating the quantity 1/c, the 
slowness, along the ray path:  
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Figure 3. Left: The sound speed profile. Right: A portion of a ray traveling from point (r1, z1) to  
(r2, z2). 

The acoustic intensity of a ray can, according to ray theory, be calculated using the principle 
that the power within a ray tube remains constant within that ray tube. This is illustrated in 
Figure 4 showing two rays with a vertical angle separation of d0 that define a ray tube 
centered on the initial angle 0. At a reference distance r0 from the source, the intensity is I0. 
Taking into consideration the cylindrical symmetry about the z axis, the power P0 within 
the narrow angle d0 is  

 2
0 0 0 0 02 cos .   P I r d  (9) 

At horizontal distance r, the intensity is I. In terms of the perpendicular cross section dL of 
the ray tube, the power is 

 2 . P I rdL  (10) 

Since the power in the ray tube does not change, we may equate Eq.(9) and eq. (10) , and 
solve for the ratio of the intensities: 
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Figure 4. The principle of intensity calculations: energy radiated in a narrow tube remains inside the 
tube; r0 represents a reference distance and 0 is the initial ray angle at the source; d0 is the initial 
angular separation between two rays; dr is the incremental range increase;  is the angle at the field 
point; dz is the depth differential; and dL is the width of the ray tube. 

Instead of using Eq.(11) , it may be more convenient to use the vertical horizontal ray dr, 
which is 
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resulting in 
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The last expression in Eq.(13) is obtained by assuming that the ray parameter is constant and 
by using Snell’s law. The absolute values are introduced to avoid problems with regard to 
the signs of the derivatives and of sin. 

With respect to the reference distance r0, the transmission loss TL is defined as 

  010log / . TL I I  (14) 

By inserting Eq.(13) into Eq.(14) the transmission loss becomes 
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The term c0/c is close to unity in water and can be ignored in most cases. 

In this treatment the transmission loss includes only the geometric spreading loss. Therefore 
bottom and surface reflection losses and sea water absorption loss must be included 
separately.  

The geometric transmission loss in Eq.(15) consists of two parts. The first term represents the 
horizontal spreading of the ray tube and results in a cylindrical spreading loss. The second 
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and third terms represent the vertical spreading of the ray tube and are influenced by the 
depth gradient of the sound speed. 

Eq.(13) predicts infinite intensity under either of two conditions: when  = 0 or when 
dr / d0 = 0. The first condition signifies a turning point where the ray path becomes 
horizontal; the second condition occurs at points where an infinitesimal increase in the 
initial angle of the ray produces no change in the horizontal range traversed by the ray. The 
locus of all such points in space is called a caustic. In both cases there is focusing of energy 
by refraction and where classical ray theory incorrectly predicts infinite intensity. Caustics 
and turning points will be discussed further in section 8.2. 

3. A recipe for tracing of rays  

A simple receipt for a ray tracing algorithm is to divide the whole water column into a large 
number of layers, each with the same thickness z. Within each layer, the sound speed profile 
is approximated as linear so that, in the layer zi < z < zi+1, the sound speed is taken to be  

     .i i ic z c g z z    (16) 

where ci is the speed at depth zi, and gi is the sound speed gradient in the layer. From Eq. (7) 
and Eq. (8) the range and travel time increments in the layer are given by 

 2 2 2 2
1 1

1 1 ( ) 1 ( ) ,i i i i
i

r r c z c z
g

 
 

       
 (17) 

and 

 
2 2

1
1 2 2

1

1 1 ( )( )1 ln .
( ) 1 1 ( )

ii
i i

ii i

c zc z
c zg c z


 








    
   

 (18) 

When 2 2
1( ) 1ic z   , the ray path turns at a depth between zi and zi+1, and Eq.s (17) and (18) 

must be replaced by the following expressions:  
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These equations give the trajectories and the travel times for any ray’s path to the desired 
range. By applying Eqs. (13) and (14), the geometrical transmission loss is also determined. 
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The simplicity of this method lies in the approximation of the sound speed profiles with 
straight-line segments and the ray path’s subsequent decomposition into circular segments. 
The method’s accuracy is determined by how well the linear fit matches the actual profile. In 
practice, the sound speed profile is often given as measured sound speeds at relatively few 
depth points. It is therefore advisable to use an interpolation scheme that is consistent with 
the usual behavior of the sound speed profile to increase the number of depth points to an 
acceptable high density. 

The examples in this article are generated using the ray trace program PlaneRay that has 
been developed by the author [7-8]. However, any other ray programs with similar 
capabilities could have been use and the discussion is therefore valid for ray modeling in 
general. Other models frequently used and are the Bellhop model [9], and the models [10-
11]. 

Figure 5 shows an example of ray modeling. The sound speed profile is shown at the left 
panel and the rays from a source at 50 m depth is shown in the right panel, which also 
shows the bathymetry and the thickness of the sediment layer over the solid half space. 

 
Figure 5. Sound speed profile and ray traces for a typical case. The source depth is 150 m and the red 
dotted line indicates a receiver line at a depth of 50 m. The initial angles of the rays at the source are 
from –30º to 30º. 

4. Eigenray determination 

To calculate the acoustic field it is necessary to have an efficient and accurate algorithm for 
determination of eigenrays. An eigenray is defined as a ray that connects a source position 
with a receiver position. In most case with multipath propagation there are many eigenrays 
for a given source/receiver configuration, which means that finding all eigenrays is not a 
trivial task.  

The PlaneRay model uses a unique sorting and interpolation routine for efficient 
determination of a large number of eigenrays in range dependent environments. This 
approach is described by the two plots in Figure 6, which displays the ray history as 
function of initial angle at the source. All facts and features of the acoustic fields such as the 
transmission loss, transfer function and time responses are derived from the ray traces and 
their history The two plots show the ranges and travel times to where the rays cross the 
receiver depth line (marked by the red dashed line in Figure 5). A particular ray may 
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intersect the receiver depth line, at several ranges. For instance at the range of 2 km, there 
are 11 eigenrays and from  Figure 6 the initial angles of these rays are approximately found 
to be 5.9°, 9.6°, 22°, 24° for the positive (down going) rays and2.0°,3.6, ° 7-4° 15.0° 
17.0° 25.0°,27.0°, for the negative (up-going waves). However, the values found in this 
way are often not sufficiently accurate for the determination of the sound field. Further 
processing may therefore be required to obtain accurate results.  

The graphs of Figure 6 are composed of independent points, but it is evident that the points 
are clustered in independent clusters or groups. This property is used for sorting the points 
into branches of curves that represents different ray history. These branches are in most case 
relatively continuous and therefore amenable to interpolation. An additional advantage of 
this method is that the contribution of the various multipath arrivals can be evaluated 
separately, thereby enabling the user to study the structure of the field in detail.  

 
Figure 6.  Ray history of the initial ray tracing in Figure 5 showing range (left) and travel time (right) to 
the receiver depth as function of initial angel at the source. 

In most cases the eigenrays are determined by one simple interpolation yields values that 
are sufficiently accurate for most application, but the accuracy increases with increasing 
density of the initial angles at the cost of longer computation times.  

Figure 7 shows examples of eigenrays traces with rays a receiver located at 2.5 km from the 
source for the scenario shown in Figure 5. To this receiver there are a total of 12 eigenrays, 
spanning the range of initial angles from -30° to 29°.  

 
Figure 7. Eigenrays from a source at 150 m depth to a receiver at 50 m depth and distance of 2.5 km 
from the source. 
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5. Acoustic absorption in sea water 

Sound absorption is important for long range propagation especially at higher frequencies. 
The absorption increases with frequencies and is dependent on temperature, salinity, depth 
and the pH value of the water. There exists several expressions for acoustic absorption in sea 
water; one of the preferred options is the semi-empirical formulae by Francoise and 
Garrison [12]. Figure 8 shows sound absorption as function of frequency in sea water using 
this expression for the values given in the figure caption. 

 

Figure 8. Acoustic absorption (dB/km) for fresh water and saltwater, plotted as a function of frequency 
(kHz) for water temperature of 10C, atmospheric pressure of one atmosphere (surface), salinity of 35 
pro mille, and pH value of 7.8. The various contributions to the absorption are also indicated. 

6. Boundary conditions at the surface and bottom interfaces 

Ray tracing is greatly simplified when no rays are traced into the bottom, but stops at the 
water-bottom interface. This avoids tracing of multiple reflections in layered bottoms. 
Instead the boundary conditions at the sea surface and the bottom can be approximately 
satisfied by the use of plane wave reflection coefficient. 

A simple and useful bottom model is assuming a fluid sedimentary layer over a 
homogeneous solid half space. The reflection coefficient of a bottom with this structure is  
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where γp1 is the vertical wave number for sediment layer and D is the thickness of the 
sediment layer. The reflection coefficient between the water and the sediment layer, r01, is 
given as  
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and r12 is the reflection coefficient between the sediment layer and the solid half space,  
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In Eq (15) and (16) Zki is the acoustic impedance for the compressional (k = p) and shear 
(k = s) waves in water column (i = 0), sediment layer (i = 1) and solid half-space (i = 2), 
respectively. The grazing angle of the transmitted shear wave in the solid half-space is 
denoted θs2.  

Figure 9 shows an example of the bottom reflection loss as function of angle and frequency 
for a bottom with a sediment layer with the thickness D = 2 m with sound speed of 1700 m/s 
and density 1800 kg/m3 over a homogenous solid half space with compressional speed 3000 
m/s, shear speed 500 m/s and density 2500 kg/m3. The wave attenuations are 0.5 dB/ 
wavelength. The critical angle changes from 60° at very low frequencies to about 28° at high 
frequencies, the two angles are given by the sound speed in the water and the two bottom 
sound speed of 3000 m/s and 1700 m/s. The small, but significant, reflection loss at lower 
angles is caused by shear wave conversion and bottom absorption In this case the 
attenuation is about 1 dB in the frequency band around 50 Hz to 100 Hz. 

The reflection coefficient of a flat even sea surface is 1 for. For a sea surface with ocean 
waves there will be diffuse scattering to all other direction than the specular direction, 
which result in a reflection loss that in the first approximation can be modeled by the 
coherent rough surface reflection coefficient  

 
22exp 2 sin .  
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In this expression  is the grazing angle and σh is the rms. wave height and λ, is the acoustic 
wavelength, both in meters.  

 

 
Figure 9.  Bottom reflection loss (dB) as function of frequency and incident angle for a 2 m sediment 
layer over solid rock. The parameters are given in the text. 
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The reflection loss associated with reflection from a rough sea surface is  

  20log10 .  cohRL R  (25) 

The same rough surface reflection coefficient may also be applied to a rough bottom. 

Figure 10 shows the rough surface reflection loss as function of grazing angle, calculated for 
a wave height of 0.5 m and the frequencies of 50 Hz, 100 Hz, 200 Hz and 400 Hz.  

 
Figure 10.  Reflection loss (dB) of rough surface with rms. wave height of 0.5 m as function of grazing 
angle, for the frequencies in the legend 

7. Synthesizing the frequency domain transfer function and the time 
responses 

The total wave field at any receiving point is calculated in the frequency domain by coherent 
summation of all the eigenray contributions. The first step in the calculation is to determine 
the geometrical transmission loss of each of the multipath contributions by applying Eq. (13) 
and Eq.(14) to the sorted and interpolated range-angle values. The frequency domain 
transfer function and the transmission loss are obtained by adding the multipath 
contributions coherently in frequency domain taken into account the phase shifts associated 
the travel times from the interpolated history of the travel times. The frequency dependent 
acoustic absorption of sound in water is included at this point in the process. The transfer 
function H( r) can be expressed as  

        , exp .    n n n n n
n

H r A B S T i  (26) 

Eq. (26) expresses the transfer function H( r) to a distance r from the source at the at 
angular frequency  as a sum over the n eigenrays that are included in the synthesis. An is 
the geometrical spreading loss factor, defined as the square root of the expression in Eq. (13). 
Bn, and Sn, are the combined effects of all bottom reflections and surface reflections, 
respectively, Tn, is 90 phase shift associated with caustics and turning points, and n is the 
travel time.  

The synthesis of the received signals is performed in the frequency domain by multiplying 
the frequency spectrum of the source signal with the transfer function of each of the 
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eigenrays and summing the contributions. The time domain response is obtained after 
multiplication with the frequency function of a source signal followed an inverse Fourier 
transform of the product. This requires the choice of a source signal, a sampling frequency 
(fs) and a block length (Nfft) of the Fourier transform.  

The total duration of the time window (Tmax) after Fourier transform is 

 max . fft

s

N
T

f
 (27) 

It is important to select the values of Nfft and fs such that Fourier time window, Tmax, is larger 
than the actual length or duration of the signal. In reality the real time duration of the 
received signal is often not known in advanced and therefore the user may have to 
experiment with different values to find appropriate values for of Nfft and fs.  

Figure 11 shows an example where the transmission loss (in dB) as function of range has 
been calculated for the frequencies of 100 Hz and 200 Hz. The dashed black line indicates 
the geometrical spreading loss, which is added for comparison and given by, 
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This expression yields a transmission loss proportional to 20log(r) when r< rt and 
proportional to 10 log(r) for r> rt . This approximation to the geometrical transmission loss 
may be used for approximate calculations of transmission loss for flat bottom and simple 
sound speed profiles. In the case shown in Figure 11 rt is set equal to the water depth at 
source location, which in this case is 200 m. 

 
Figure 11.  Transmission loss as function of range calculated for 100 Hz and 200 Hz The dashed black 
line is values of Eq.(28) 
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Figure 12 shows the synthesized time response at receivers spaced at 200 m separations in 
range up to 6 km. The sound speed and bathymetry is the same as in Figure 5 with the source 
at 150 m and all receivers at 50 m depth. The time scale is in reduced time to remove the gross 
transmission delay between the source and receiver. The reduced time is defined as 

 . red real
red

r
t t

c
 (29) 

In Eq. (29), treal and tred are the real and reduced times, respectively, r is range and cred is the 
reduction speed. The actual value of cred is not important as long as the chosen value results 
in a good display of the time responses.  

 
Figure 12.  Received time signals as function of range and reduced time. 

In the example shown above, the time signal and calculated assuming a narrow band-
limited source signal in the form of a Ricker pulse. An example of a Ricker pulse and its 
frequency spectrum are shown in Figure 13. 

 
Figure 13.  Ricker time pulse and frequency function the center frequency of 100 Hz 
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The time responses in  Figure 12 are sorted according to the history of their eigenrays and 
color coded to allow for studying the various multipath contributions. This is particularly 
useful when dealing with transient signal and broad band signal, especially when 
knowledge of the multipath structure is important. In many such situations only the direct 
arrival or the refracted arrivals in the water column may carry the useful signals and all the 
other arrivals represent interference. In this case there are direct arrivals, followed by 
surface reflected and refracted arrivals at the turning points. Notice the high sound pressure 
values caused by the caustics at 3 km, 6, km and 7 km, which are apparent in both plots, this 
issue is discussed in section 8.2. 

The red dotted line in Figure 12 represents an estimate of the duration of the cannel impulse 
response. This time duration is mainly given by the bottom reflection coefficient and the 
critical angle. Rays that propagate at angles closer to the horizontal plane than the critical 
angle experience almost no bottom reflection loss and may therefore propagate to long 
distances. Rays with steeper angles will experience higher reflection losses and die out more 
rapidly with range. Thus the time duration of the impulse is directly determined by the ratio 
of sound speeds in the water and the bottom as 
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This estimate of the time duration of the channel impulse response assumes that the bottom 
is fluid, homogenous and flat, but the estimate may also be useful in other cases with 
moderately range dependent depth and with solid or layered bottom.  

8. Special considerations  

8.1. Frequency of applications 

Ray tracing is a high frequency approximation to the solution of the wave equation and in 
principle more valid for high than for low frequency applications. However, high resolution 
prediction of higher frequency acoustic fields is difficult both for numerical and physical 
reasons. Principally most important is the physical limitation caused by the fact that the 
sound speed and the environment are generally not known in sufficient detail. This can be 
illustrated by a simple example. Consider coherent communication using a frequency of 10 
kHz with wavelength of 10 mm. The required accuracy in order to be correct at a distance of 
1 km is that the sound speed is known and stable with a relative error less 10-5, an impossible 
requirement to satisfy in practice regardless of the numerical accuracy of the computer 
model. 

8.2. Caustics and turning points 

As mentioned before, the locations where dr/d0=0 are called caustics where the ray phase is 
decreased by 90 and the where the intensity, according to ray theory, goes to infinity. In 
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reality the intensity is high, but finite, and the basic ray theory breaks down at these points. 
There exists theories to amend and repair the defects of ray theory at these points [1, 2, 13], 
but that is not discussed here. 

Figure 14 shows details of the field at a showing the rays with initial angles in the range of 
6° to 1°. The scenario is the same as in of Figure 5, but for clarity the tracing of rays have 
been stopped after the first bottom reflection and the figure concentrates on the details the 
field at the caustic at 1760 m range for a ray with initial angle of 5.6°. Figure 15 shows the 
time responses for ranges in the interval from 1.6 km to 1.9 km. In this case, the source signal 
is a Ricker pulse with a peak frequency of 200 Hz. There is a first direct arrival (black color) 
at all ranges. From the range 1760 there is also a refracted arrival a little later than the direct, 
but with higher amplitude, in particular near the range of 1760 m. Notice the effect of the 90° 
phase shift for ranges beyond the caustic at 1760 m and that the amplitude at this range is 
considerable higher than at the other ranges. 

 

 
Figure 14.  Rays through a caustic  

 
Figure 15.  Time responses around the caustic at 1.76 km. The transmitted signal is a Ricker pulse with 
peak frequency of 200 Hz. 
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8.3. The principle of reciprocity and its validity in ray modeling 

The principle of reciprocity is an important and useful property of linear acoustics and 
systems theory. The principle is very general and valid also in cases where the wave 
undergoes reflections at boundaries on its path from source to receiver [14]. The reciprocity 
principle is correctly represented in ray modeling, as can easily be understood from the 
eigenray plots of Figure 7. The eigenrays from a source position to the receiver position are 
the same as when source and receiver changes positions. The reflections at the bottom and 
at the sea surface are also symmetric in angles and consequently the acoustic fields are the 
same. However, it should be noted that the reciprocity principle applies to a point-to-point 
situation. This means that, for instance, that the development of the transmission loss as 
function source-receiver separation is generally not the same for the two directions.  

8.4. The validity of using plane wave reflection coefficients 

The accuracy of any ray model depends on the validity and limitation of ray theory and the 
implementation. A fundamental assumption of model is that the interactions with the 
boundaries are adequately described by plane wave reflection coefficient. In this section the 
validity of this assumption is investigated. 

 The general expression for the reflected field is given in text books, for instance in [13], over 
horizontal wave numbers k, as 
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Φref(r, zr ω) is the reflected field due to point source with frequency ω and source strength 
S(ω).  k  is the reflection coefficient,  1

0H kr  is the Hankel function of first kind, which 

represents a wave progressing in the positive r-direction. The horizontal wave number k and 
the vertical wave number are related to the sound speed, frequency and the angle  by 
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Eq.(31) states that the field is given as an integral over all horizontal wave numbers, or as 
consequence of Eq.(32) , integration over all angles both real and the imaginary. 

 Consider now the situation where  k   is constant and independent of k or the angle. 

The integral in Eq.(31) becomes a standard integral and  
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  22 .    s rR r z z  (34) 

According to Eq. (33) the reflected wave is the same as the outgoing spherical wave from the 
image of the source in the mirror position of the real source and modified by the constant 
reflection coefficient . The situation with a constant reflection coefficient is valid for 
perfectly flat sea surface where the reflection coefficient is equal to -1 for all angles of 
incidence. Thus the reflection from a smooth sea surface is accurately described plane wave 
reflection coefficients. 

In the general case, and for reflections from the bottom, the reflection coefficient  k  is not 

constant and the integral can only be solved approximately or numerically. In order to 
obtain an approximation of the integral in Eq.(31) , the Hankel function is expanded in a 
power series with the first terms being 
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Restricting the integral of Eq.(31) to the first term yields  
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The exponential in the integrand will normally be a rapid varying function and therefore the 
value of the integral will be small except when the phase term of Eq.(36) is nearly constant. 
The phase term of Eq.(36) is 

   .   r si z z ikr  (37) 

The stationary points are defined to the values of the horizontal wave number k where the 
derivative of the phase with respect to k is equal to zero, that is where dα/dk=0, giving the 
stationary point as 
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The interpretation of this result is quite simple; the reflected wave field is equal to that of the 
image source multiplied with the reflection coefficient at the specular angle 0. 

There are however situations where this approximation is not sufficient in practice. This is 
discussed in [13] and in the following their results are cited without proof. The accuracy of 
the approximation depends on the source or receiver distance from the bottom interface. 
The result of the analysis is that the distance z from the bottom must satisfy 
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With the water parameters of ρw = 1000 kg/m3 and cw=1500 m/s, and the bottom parameters 
of ρb = 1500 kg/m3 and cb=1700 m/s. Equation (39) requires than the distance from the bottom 
satisfy z>> 0.5 λ for the validity of using plane wave reflection coefficient at the bottom 
interface. A harder bottom with ρb = 1800 kg/m3 and cb=3000 m/s, gives the requirement that 
z>> 1.0 λ. Hence the condition for validity is somewhat easier to satisfy for a soft bottom 
than for a hard bottom.  

8.5. Bench marking ray modeling  

The wave number integration model OASES [15] has been used to validate the accuracy and 
the limitation of the ray trace model using the simple case with constant water depth of 100 
m and constant sound speed of 1500 m/s. 

Figure 16 show the calculated transmission loss for the frequencies of 25 Hz, 50 Hz, 100 Hz 
and 200 Hz. The agreements between the results are very god for the higher frequency, but 
with some discrepancies for the lower frequencies, in particular for 25 Hz. The discrepancy 
is mainly a phase shift in the interference patterns of the two results, most pronounced for 
low frequencies and long ranges. This observation agrees with the theory outlined earlier. 
The seriousness of this discrepancy or errors may not very important in practice since the 
mean level is nearly the same as shown by the comparison with the OASES model. 

 
Figure 16.  Comparison of the transmission loss as function of range for selected frequencies by 
PlaneRay (solid blue line) and OASES (dotted red line) for Pekeris’ waveguide with a homogenous 
solid bottom with compressional wave speed of 3000 m/s and shear wave speed 500 m/s. Both wave 
attenuations have the values of 0.5 dB/wavelength. 
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9. Case studies 

In the following we present two case studies that are relevant application of the modeling 
techniques descried in this article. The first if these is in connection with acoustic 
underwater communication and the transmission of digital information. In this case the 
multipath communication may be a significant problem causing intersymbol interference 
and significant degradation of reliability and performance. The second case is related to 
studies on the propagation of low frequency sound and the effect such noise may affect 
marine life, sea mammals and fish. 

9.1. Seasonal variations of communication links 

In connection with a study of underwater acoustic communication the propagation over a 6 
km track has been modeled for the various seasonal sound speed profiles. 

 The sound speed some months are shown in Figure 17. The sound speed profiles depend on 
the sea water temperature, the salinity and the depth. In the present case the sea water 
temperature variation with depth and the seasons is the main reason for changes in sound 
speed profile. During winters the surface water is cold and the sound speed is low, in the 
summer the surface water temperature and the sound speed is higher. The seasonal heating 
and cooling of the surface water propagates also to deeper depths, but with diminishing 
temperatures changes. At very large depths the water temperature is nearly the same at all 
seasons and the sound speed increases linearly and slowly with depth. 

 
Figure 17.  Sound speed profiles measured at specific dates for the months given in the figures 

Figure 18 shows ray tracing results are for the same profiles as displayed in Figure 17. The 
purpose of the study was to investigate the possibility of communication to positions beyond a 
sea mount and to study the multipath arrival structure as function of range and depth. 



 
Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices 592 

There is a seamount with a peak at about 3 km from the transmitting station. In order to 
simplify the interpretation ray tracings in these plots have been terminated after 6 bottom 
reflections, but all rays are included in the calculation of the acoustic field, but rays with so 
many bottom reflections, or more, will in most case not be useful for data communication 
because of the reflection loss and reduced coherence. 

 
Figure 18.  Ray tracing plots assuming a source depth of 15 meter for four monthly conditions at the 
Roberg test site. The sound speed profiles are the same as shown in Figure 17. 

Figure 19 shows examples of received time responses at 25 m depth using a Ricker pulse as 
source signal. The different multipath contributions are color coded for clarity. At distances 
from the source over 1.5 km the first arrivals is follow paths surface reflected and upward 
refracted paths 

Figure 20 shows the channel responses at a fixed range as function of depth down to 50 m. 
This figure shows the total response after adding all the individual multi path contributions. 
The plots demonstrate that the surface channel consists of deep refracted path and a number 
of paths reflected from the surface and deeper upwards refractions. The stability of these 
paths may be uncertain and subject to rapid changes in the environmental conditions near 
the surface due to temperature wind and current. 

 
Figure 19.  Time responses as function of range for receivers at depths of 25 m with a source at 15 m. 
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Figure 20.  Time responses as function of receiver depth at a fixed horizontal distance of 3 km from a source at 15 
m depth. 

9.2. Seismic noise propagation 

In many areas of the world anthropogenic noise often dominates over the natural ambient 
noise, especially in the low frequency band from approximately from 10 Hz and upwards to 
1000 Hz, or more. This frequency band coincides approximately with the frequencies of 
perception of sea mammals and fish and may therefore be harmful to their natural activities, 
or even cause physical damages. An example is the case of the seismic exploration for oil 
and gas in certain areas where there is important commercial fishing interest. The 
propagation and distribution of acoustic noise depends the environmental conditions, in 
particular the oceanographic parameters, the topography of the seafloor and the acoustic 
properties of the bottom. In this section some of examples are presented to illustrate how the 
environment may affect the distribution of sound and noise. This study and discussion is 
also relevant for passive sonar applications to detect and track submerged vehicles and 
objects base emitted acoustic noise 

The effects of bathymetric are illustrated in Figure 21 showing ray traces of upslope and 
downslope conditions for typical summer conditions at the Halten Bank in the Norwegian 
Sea. With downslope propagation there is a thinning the ray density with distance and 
upslope propagation gives a concentration of rays as the water depth diminishes.  

 
Figure 21.  The effect of up and down sloping bottoms on the acoustic field distribution calculated for 
the typical summer condition in the month of July. 
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Figure 22 and Figure 23 show the calculated sound pressure level as function of range for 
the downslope and upslope propagation. The sound pulse from an airgun array is modeled 
as s a Ricker pulse with a peak pressure of 260 dB rel. 1µPa, centered on the frequency of 50 
Hz, The horizontal dashed line is the assumed threshold value for fish reaction to sound. 
The bottom is modeled with a 2 m thick sedimentary layer over solid rock. The sound speed 
in the sediment layer is 1700 m/s and the density is 1800 kg/m3. The compressional sound 
speed in the rock is 3000 m/s, and density is 2500 kg/m3. The results in Figure 22 and Figure 
23 are obtained under two conditions: (a) with a shear speed of 500 m/s, and (b) with no 
shear wave in the rock, i.e. the shear speed is zero. The absorptions are assumed to be 0.5 dB 
per wavelength for all the waves in the sediment layer and the rock. In the first case (a) the 
bottom reflection loss is as shown in Figure 9 with a significant low frequency reflection loss 
at angles lower than the critical angle caused by absorptions and conversion to shear wave 
in the bottom, which draws energy for the reflected wave. In the case of Figure 22 this 
results in a low-frequency and low-angle reflection loss of about 1 dB. For long ranges and 
many reflections this adds up to a significant total propagation loss. With no shear 
conversion the reflection loss is considerably reduced and the sound propagates easier to 
long ranges. The difference between the sound level at 50 Hz and 100 Hz is partly a result of 
increase attenuation at the higher frequency and partly that the source level in this case is 
higher for 50 Hz than for 100 Hz. 

 
Figure 22.  Sound pressure level as function of range for downslope propagation and July conditions. 
Left: With shear wave conversion (500 m/s). Right: No shear wave conversion. 
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Figure 24 and Figure 23 show similar results for downslope and upslope propagation for 
typical winter conditions represented by a sound speed profile measured in the month of 
February. For downslope conditions the sound level decrease rapidly with increasing depth 
and much more rapidly with shear wave conversion (Figure 24a) than without shear (Figure 
24b). With upslope propagation (Figure 23) the sound levels are near independent of shear 
conversion except at the very long rages where the water depth becomes constant. The 
examples demonstrate that sound propagation in the ocean is strongly influenced by both 
by the oceanographic conditions and the geophysical properties of the bottom. Reliable 
prediction of acoustic propagation condition requires modeling tool that can that can handle 
both bottom and water properties.  

 

 

 
Figure 23. Sound pressure level as function of range for upslope propagation and July conditions. Left: 
With shear wave conversion (500 m/s). Right: No shear wave conversion. 

 

 
Figure 24. Sound pressure level as function of range for downslope propagation and February 
conditions. Left: With shear wave conversion (500 m/s). Right: No shear wave conversion. 
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Figure 25. Sound pressure level as function of range for upslope propagation and February conditions. 
Left: With shear wave conversion (500 m/s). Right: No shear wave conversion 

10. Summary 

The article has outlined the theory of ray modeling and described how the theory can be 
applied to study acoustic wave propagation in the ocean. The complete acoustic fields are 
calculated by coherent addition of the contributions of a large number of eigenrays. In this 
method no rays are traced into the bottom, but the bottom interaction is modeled by plane 
wave reflection coefficients. Ray tracing is, by definition, frequency independent and 
therefore the ray trajectories through the water column are valid for all frequencies. 
Frequency dependency is introduced by reflections from the sea surface and the bottom, 
including loss associated with absorption and diffuse scattering of a rough ocean and 
bottom interfaces. Ray tracing is therefore a computational effective method for modeling 
broad of frequency band wave fields and for calculation of time responses. 

Ray tracing is high-frequency approximation to the solution of the wave equation and the 
accuracy and validity at lower frequencies may be questioned, in particular the use of plane 
ray reflection coefficient to represent the bottom effects. This problem has been considered 
both theoretically and by simulations and comparison with more accurate model. The 
results of this study shows that source and receiver should be at a height above the bottom 
of at least half a wavelength, but there is no similar requirement to the distance from the sea 
surface. Less fundamental is the limitation of the numerical accuracy of the determination of 
the eigenrays, which is most serious in the calculation of the ray amplitude and the 
transmission loss. These inaccuracies are of more practical nature and can be reduced by 
refinements in the calculations.  

Examples relevant for application in acoustic underwater communication and active sonar 
have been presented. The propagation of low frequency sound to large distances has been 
presented showing the effect of the bathymetry and the acoustic properties of the bottom. 
An important conclusion is the effect of bathymetry and the sound speed structure interacts 
and that accurate modeling of sound propagation requires information about the 
oceanography, the bathymetry and the geology of the bottom. 
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