
Target Strength 
 
 When an active sonar pulse is transmitted into the water, some of the sound reflects off of 
the target.  The ratio of the intensity of the reflected wave at a distance of 1 yard to the incident 
sound wave (in decibels) is the target strength, TS.   
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Ir depends on the physical characteristics of the target and characteristics of the signal (angle and 
frequency).  The result in the square brackets comes from the fact that if all the energy reflects 
from the target, the Power striking the target and the power leaving the target must be equal. 
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where r is 1 yard.  The backscatter cross section is a number that represents the degree to which 
sound is scattered off a target.  It is related to the size, shape and reflectivity of a target. 
 
 Can the quantity, target strength be solved for analytically?  Yes, but only for simple 
geometric shaped objects.  We will present how this can be done for a convex object and a 
simple sphere.  For more complicated geometric objects, I have included a table from Urick, 
Principles of Underwater Sound, which gives the formula to calculate the target strength for 
many other shaped objects.  For any irregularly shaped object, we may be able to model them as 
a simple geometric object but for a precise value, we would have to use empirical data. 
 For analysis, assume that the incident wave is a plane wave (valid if source far from 
target) and that the scattered wave is spherical originating from the target.  Ir is measured 1 yd 
(or 1 m) from the target. 

Target Strength of an arbitrary convex object 
 

In the diagram below, let the surface area of the arbitrary convex surface be dA=ds1ds2.  
If the sound incident on the surface has an intensity, Ii, then the power striking the surface is  

 
i 1 2 i 1 1 2 2dP I ds ds I R d R d= = θ θ  

 
since ds=Rdθ.  The centers of curvature for the two sides of the surface are not in general the 
same point.  
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The pivotal question when examining the reflected intensity is what angles dθ1’ and dθ2’ 
does the sound energy bounce of the surface into.  Examination of the ray diagram below shows 
that sound hitting the surface within an angle, θ1, of the equator, bounce of the surface following 
the law of reflection.  As such the ray departs the surface with an angle, 2θ1, twice the incident 
angle.  We notice that the exiting rays appear to emanate from a point half way between the 
center of curvature and the surface.  In General Physics we called this a “focal point” and for a 
spherical mirror we recall that it was located at one half the radius of curvature.  
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With this in mind, we identify the surface the energy leaving the surface must pass 
through is 

2
1 2 1 2 1 2dA ds ds r2d r2d 4r d d′ ′= = θ θ = θ θ  

The reflected intensity is then: 
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The resulting Target Strength follows from the definition: 
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As a special case, let us look at a simple rigid sphere.  In this case, R1=R2=a, the radius of the 
sphere. The Target Strength then becomes 
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Let’s see if this result makes physical sense. 
 

Target Strength of Simple Rigid Sphere 

Case I:  (ka>>1 {or ka > 10} or in other words, when the radius of the sphere is much 
larger than the wavelength of the incident wave.) 
 

 If the rigid sphere is 
large compared with the 
wavelength of the incident 
sound wave and the sphere is 
an isotropic reflector (reflects 
sound equally in all 
directions), we can use the 
diagram at right: 
 
 The power of the 
incident wave that will be 
reflected is that power of the 
wave incident on a cross-

section of the sphere where: 

a 

incident wave 

reflected wave 
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Since the power of the incident wave is all reflected back, we find that: 
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Then using the definition of target strength, we find: 
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This is exactly the same result we obtained above as a special case of an arbitrary convex 
surface.  Note that the above target strength result is independent of frequency (as long as 
ka>10).  Target strength just depends on the radius, a.  For a 1 cm radius rigid sphere, 

.  A 2 m radius sphere however would have a TS= 0 dB.  This 
simple approximation is only meaningful for high frequencies where the wave effects can be 
averaged.  For lower frequencies (longer wavelengths), the wave effects must be taken into 
account. 

5 22.5 10  m  and =-46 dBbs TSσ −= ×

Case II:  (ka<1) 

 When the wavelength of the incident wave is large compared to the size of the sphere, 
some of the wave will appear to continue past the ball as if it did not exist.  There will actually be 
very little backscattering.  This case, Lord Rayleigh showed that: 
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a

θ

180o 0o

 

For the target strength, µ=-1 (cos 180° = -1, straight backscatter) and r = 1 yd.  The above then 
becomes: 

( ) [ ]4 2
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For Case I, one of the major assumptions was that the entire cross-sectional area (σ) contributed 
to the backscattering of the incident sound energy.  For this case, the ratio of the effective 
backscattering cross-section to the geometric cross-section would be: 

( )4bs
2 2.8 ka

a
σ
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π

 

Notice that σ/πa2 increases very rapidly with frequency ( )4f∝ , therefore target is barely 
detectable when size is much smaller than the wavelength.  As frequency increases there is a 
limit to Rayleigh scattering: 

2 aka 1

Occurs when =2 a

π
= =

λ
λ π

 

Case III:  If 1<ka<10 

 For this exceptional case, we can use the plot given below which was taken from Urick, 
Principles of Underwater Sound, p. 299.  This plot shows the ratio of the backscattering cross-
section to the geometric cross-section as a function of ka, which can be used to calculate a value 
for the target strength.  Target response in this range is dominated by interference between 
reflected wave and “creeping waves” refracted around the surface of the sphere. 
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Fluid Sphere 

 Spherical target is no longer ideally rigid, therefore in the Rayleigh regime: 
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When ρ2>ρ1 and c2>c1, therefore σbs approaches that of ideal rigid sphere.  When ρ2<ρ1 and 
c2<c1, σbs is dominated by the compressibility of the sphere: 
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σbs is much higher than for a rigid sphere of the identical radius.  For example, the target strength 
of an air bubble is 75 dB higher than the target strength of rigid sphere with same radius. 
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Scattered Gas Bubbles 
 
 Backscatter of gas bubbles in sea water is widely studied because of the important 
acoustic implications.  Air bubble clouds can create undesirable reverberation from the sea 
surface.  Gas bubbles are also present in sediment and are an essential component of seafloor 
backscattering.  Effects of random populations on the acoustic propagation and backscattering 
are difficult to predict accurately other than statistically.  Gas bubble acoustic behavior is 
dominated by resonance.  For frequencies near the resonance frequency (f0 depends on bubble 
size), backscattering and absorption are enhanced; 
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Resonant frequency can be approximated as: 
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Damping effect is due to the combined effects of radiation, shear viscosity and thermal 
conductivity.  A good approximation is , where f0.30.03  for 1 kHz< 100 kHzk kf fδ ≈ k is the 
frequency in kHz. 
 
Fish Target Strength 
 
 Main contribution for fish target strength comes from the swim bladder.  This gas-filled 
bladder shows a very strong impedance contrast with the water and fish tissues.  It behaves either 
as a resonator (frequencies of 500 Hz-2 kHz depending on fish size and depth) or as a geometric 
reflector (> 2 kHz).  This swim bladder behaves very similar to gas bubbles.  The difference in 
target strength between fish with and without swim bladder can be 10-15 dB.   
A semi-empirical model most often used is: 

19.1log 0.9 log 24.9fish kTS L f= + −  
Love (1978) 

 
This formula is valid for dorsal echoes at wavelengths smaller than fish length L. 
A more detailed model is: 
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20logfish specTS L TS= −  
McLennan and Simmonds (1992) 

 
TSspec is given in Table 3.1 of Lurton, p.77.  Note the lowest TSspec is for mackerel which has no 
swim bladder.  As frequencies approach the resonant frequency around 1 kHz, the target strength 
increases and can reach -25 to -20 dB.   
 

For many other geometric shapes: 

 Use the tables given at the end of this lesson.  Below are the equations and definition of 
terms for a cylinder.  

Scattering from Cylinders
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Dimensions (L,a) large 
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Conclusion 

 One of the main points of this section is that it is extremely difficult to get an accurate 
value for the target strength of a complex target but, if we can approximate the target as a simple 
geometric shape, we can calculate a value that sould be sufficient.   
 

For the wavelengths that we typically use for active sonar systems though, a rough 
approximation that can often be used is that the target strength will be directly related to the 
cross-sectional area of the target. 
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Form t  
TS=10log(t) Symbols Direction of 

incidence Conditions 

Any convex 
surface 

1 2a a
4

 

a1a2 = principal 
radii of 
curvature 
r = range 
k = 
2π/wavelength 

Normal to 
surface 

ka1, ka2 >>1 
r>a 

Large Sphere 
2a

4
 a = radius of 

sphere Any ka>>1 
r>a 

Small Sphere 
2

4

V61.7
λ

 
V = vol. of 
sphere 
λ = wavelength 

Any ka<<1 
kr>>1 

Infinitely long 
thick cylinder 

ar
2

 a = radius of 
cylinder 

Normal to axis 
of cylinder 

ka>>1 
r > a 

Infinitely long 
thin cylinder 

4 4

2

9 a rπ
λ

 a = radius of 
cylinder 

Normal to axis 
of cylinder ka<<1 

2aL
2λ

 

L = length of 
cylinder 
a = radius of 
cylinder 

Normal to axis 
of cylinder 

Finite cylinder 

( )2
2 sinaL cos

2

β 2 θβ
λ

 

a = radius of 
cylinder 
β = kLsinθ 

At angle θ with 
normal 

ka>>1 
r > L2/λ 

Infinite Plane 
surface 

2r
4

  Normal to plane  

Rectangular 
Plate 

22
2ab sin cos⎛ ⎞β⎛ ⎞ θ⎜ ⎟ ⎜ ⎟λ β⎝ ⎠ ⎝ ⎠

 
a,b = sides of 
rectangle 
β = ka sinθ 

At angle θ to 
normal in plane 
containing side 
a 

r > a2/λ 
kb >> 1 
a > b 

Ellipsoid 
2bc

2a
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
a, b, c = 
semimajor axis 
of ellipsoid 

parallel to axis 
of a 

ka, kb, kc 
>>1 
r >> a, b, c 

Circular Plate ( ) 22
1 22Ja cos
β⎛ ⎞⎛ ⎞π

θ⎜ ⎟⎜ ⎟λ β⎝ ⎠⎝ ⎠
 

a = radius of 
plate 
β = 2kasinθ 

At angle θ to 
normal 

r > a2/λ 
ka>>1 

Circular Plate 
2

4 64 k a
3

⎛ ⎞
⎜ ⎟π⎝ ⎠

 a = radius 
k = 2π//λ 

Perpendicular 
to plate ka<<1 
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Problems 

1.  Johns Hopkins Applied Physics Lab is researching active, mine mapping sonar.  The sonar 
they are using uses a frequency of 40 kHz.  The mines they are trying to detect are spherical balls 
that are 1.4 m in diameter. 
 
Which of the following is true: 

a) The TS of the mines can be approximated using the large sphere formula 

(
4

log10
2aTS = ) since ka>>1. 

b) the TS of the mines can be approximated using the small sphere formula 

(
2

4

VTS 10log 61.7
⎛ ⎞

= ⎜ λ⎝ ⎠
⎟ ) since ka<<1. 

c) The target strength of the mines does not depend on the frequency of the sonar system. 
d) Lower frequency sonar should be used to get better spatial resolution of the mines. 

2. If the target strength of the mines in problem 1 is found to be –9.1 dB, what would be the 
intensity of a return wave if the incident wave had an intensity of 21 W/m2? 

 
3. What would be the best approximation of the target strength of a submarine that is 300 

meters long, and 30 meters in diameter?  Assume the frequency of the active sonar is 40 kHz. 
 
4. Given a sphere of radius 1.0 m in water (c = 1500 m/s) for what range of frequencies is the 

sphere considered to be 
a) A “large perfectly rigid” sphere (corresponding to specular or geometrical scattering). 
b) A “small fixed rigid” sphere (corresponding to Rayleigh scattering). 

 
5. A modern torpedo is roughly 65 cm in diameter and 6 m long.  An active sonar of frequency 

20 kHz is used to measure the target strength when c = 1500 m/s.  For each case take r = 
1000 m. 
a) Why is range, r, given in this problem? 
b) If from the beam aspect, we consider the torpedo to be a cylinder, what target strength is 

expected. 
c) If from head-on we take the nose to be spherical, what target strength is to be expected? 

 
6. The first teardrop shaped submarine was USS Albacore, shown below at its museum site in 

Portsmouth NH.   
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Image courtesy of the Historic Naval Ships Association 

 
Consider USS Albacore to be an ellipsoid of length 68 m and diameter 9.0 m at the midpoint.  
Calculate the target strength for active sonar at a beam aspect.   
 
7. A sound beam of frequency 15 kHz is being used to search for a thick rectangular flat plate 

with dimensions 5.0 m x 3.0 m dropped from an oil rig at a depth of 100 m.  Calculate the 
target strength of the plate: 
a) At normal incidence, and 
b) At an angle of 30o from the normal in the plane of the longer axis of the plate. 

 
8. Given a sphere of radius 0.20 m in seawater where c = 1500 m/s, use the below figure to 

determine: 
a) The ratio of backscattering to geometric cross section for 10 Hz, 100 Hz, 1000 Hz, 10 kHz. 
b) The target strength for frequencies of 10 Hz, 100 Hz, 1000 Hz, 10 kHz. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

17-11 



9. An acoustic pulse has an intensity of 10 W/m2 incident 100 m from the center of an 
underwater target.  The intensity of the 180o reflected pulse has an average intensity of 3.16   
µW/m2

 also measured 100 m from the target center.  If spherical spreading is the only 
transmission loss, find the target strength of the object.  Hint:  EL = SL – 2 TS - +TS 
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Target Strength
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incident wave
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At r = 1 yd.

Factors Determining Target Strength

• the shape of the target
• the size of the target
• the construction of the walls of the target
• the wavelength of the incident sound
• the angle of incidence of the sound

Target Strength of a Convex Surface
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Incident Power
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(At r = 1 m)

Special Case – Large Sphere
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a
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π
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TS positive only if a > 2 yds

Large Spheres (continued)
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Example

• An old Iraqi mine with a radius of 1.5 m is 
floating partially submerged in the Red Sea.  Your 
minehunting sonar is a piston array and has a 
frequency of 15 kHz and a diameter of 5 m.  20 
kW of electrical power are supplied to the 
transducer which has an efficiency of 40%.  If the 
mine is 1000 yds in front of you, what is the signal 
level of the echo.  Assume spherical spreading.   

Scattering from Small Spheres 
(Rayleigh Scattering)

22 2
r

4 2
i

I V 3 cos 1
I r 2

π ⎛ ⎞= θ−⎜ ⎟λ ⎝ ⎠

( )4 225TS 10log ka a
36
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ka 1<

Scattering from Cylinders

L
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2 1yd

⎡ ⎤⎛ ⎞ α θ⎛ ⎞= ⎢ ⎥⎜ ⎟⎜ ⎟λ α⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

2 L sinπ
α = θ

λ
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2

2
aL 1TS 10log
2 1yd

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟λ⎢ ⎥⎝ ⎠⎣ ⎦

o0θ =

Dimensions (L,a) large 
compared to wavelength

Gas Bubbles

• Damping effect is due to the 
combined effects of radiation, 
shear viscosity and thermal 
conductivity.  A good 
approximation is 

• where fk is the frequency in kHz.
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0.30.03  for 1 kHz< 100 kHzk kf fδ ≈ <

Fish
• Main contribution for fish target strength comes from the swim 

bladder.  
• This gas-filled bladder shows a very strong impedance contrast with 

the water and fish tissues.  It behaves either as a resonator (frequencies 
of 500 Hz-2 kHz depending on fish size and depth) or as a geometric 
reflector (> 2 kHz).  This swim bladder behaves very similar to gas 
bubbles.  The difference in target strength between fish with and 
without swim bladder can be 10-15 dB.  

• A semi-empirical model most often used is:

• Love (1978)
• This formula is valid for dorsal echoes at wavelengths smaller than fish 

length L.

19.1log 0.9 log 24.9fish kTS L f= + −
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r >> a, b, cparallel to axis of aa, b, c = semimajor axis 

of ellipsoidEllipsoid

r > a2/λ
kb >> 1
a > b

At angle θ to normal in 
plane containing side a

a,b = sides of ractangle
β = ka sinθRectangular Plate

Normal to planeInfinite Plane surface

At angle θ with normala = radius of cylinder
β = kLsinθ

ka>>1
r > L2/λ

Normal to axis of 
cylinder

L = length of cylinder
a = radius of cylinder

Finite cylinder

ka<<1Normal to axis of 
cylindera = radius of cylinderInfinitely long thin 

cylinder

ka>>1
r > a

Normal to axis of 
cylindera = radius of cylinderInfinitely long thick 

cylinder

ka<<1
kr>>1AnyV = vol. of sphere

λ = wavelengthSmall Sphere

ka>>1
r>aAnya = radius of sphereLarge Sphere
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a1a2 = principal radii of 
curvature
r = range
k = 2π/wavelength

Any convex surface

ConditionsDirection of incidenceSymbolst 
TS=10log(t)Form
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Example

• What is the target strength of a cylindrical 
submarine 10 m in diameter and 100 m in 
length when pinged on by a 1500 Hz sonar? 

2 4 6 8 10

-40

-20

20

40
TS

θ

10o
5o

Example 

• What is the target strength of a single fish 
1m in length if the fish finder sonar has a 
frequency of 5000 Hz?
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