Già Dirgente ALENIA ELSAG SISTEMI NAVALI Consulente per i sistemi di localizzazione subacquea

Cesare Del Turco

Via Giacomo Doria 71 19124 La Spezia Tel. 0187 739354 Cell. 3492190807

16n . -

Constant .

STUDIO DI FATTIBILITÀ PER LA INDIVIDUAZIONE E REALIZZAZIONE DI UN SISTEMA DI MISURA DEL TARGET STRENGTH DI UNITÀ SOMMERGIBILI

INDICE

1	Generalità	5
2	Individuazione del sistema di misura	6
2.1	Ricerche e motivazioni relative alla scelta della metodologia da adottare	6
2.2	Personalizzazione del sistema di misura	6
2.2.1	Il sistema originale di Urick per la misura del TS	6
2.2.2	l Il metodo per la misura del TS con il sistema personalizzato	8
3	La struttura sperimentale	10
3.1	Il campo d'azione e la strumentazione necessaria	10
3.2	Calcolo delle variabili acustiche sperimentali	11
3.2.1	Calcolo del target strenght del bersaglio	11
3.2.2	Calcolo del livello di emissione SLp	11
3.3	Lo schema a blocchi dell'hardware di misura	12
3.4	Esempio di computazioni a seguito dei rilievi sperimentali	13
4	La struttura definitiva di misura	15
4.1	Il campo nella struttura definitiva	15
4.2	Movimentazione e posizionamento dei mezzi e dimensioni del campo	16
5	Le variabili acustiche nella struttura definitiva (unità A su nave)	17
5.1	Calcolo delle variabili acustiche (unita A su nave)	17
5.2	Calcolo delle caratteristiche del canale di amplificazione segnale d'eco	18
5.3	Determinazione delle caratteristiche del trasmettitore di impulsi	18
5.4	Esposizione generale delle caratteristiche dei trasduttori KX e TX	19
5.5	Caratteristiche della base BI	20
5.6	Valutazioni del rapporto segnale/disturbo nella ricezione	20
- 7	degli impulsi nell'unita A	20
5.1	L'effetto della riverberazione nella misura del 15	21
5.8	La variabili aquatiaba nalla atruttura definitiva (unità P au horraglio)	25
0	Calacla della variabili acusticha (unità P su bargaglio)	35
6.2	Calcolo delle carattoristiche, del canale di amplificazione segnale di Ry.	36
6.2	Determinazione delle caratteristiche dei trasmettitori per Tr/Gn	36
6.4	Esposizione generale delle caratteristiche dei trasduttori Ry, e Tr/Gn	37
6.5	Valutazioni rapporto segnale/disturbo nella ricezione degli impulsi	51
0.5	valutazioni rapporto segnate/disturbo nena neezione degli impuisi nell'unità B	37
6.6	Diagramma dei livelli dell'unità B	37
7	Il sonar FALCON per la misura dell'angolo di esposizione del bersaglio	38
71	Il sonar FALCON	38
72	Le variabili acustiche per l'impiego del FALCON	40
73	Il generatore del rumore di posizione	41
7.4	La base ricevente Bf del FALCON	42
75	Calcolo degli errori di rilevamento dovuti al collegamento acustico	43
8	Filosofia di funzionamento del sistema di misura del TS	47
9	Lo schema a blocchi del sistema	49
9.1	L'unità A	49
9.2	L'unità B	53
9.2.1	Il filtro di banda	56
9.3	Sugli schemi a blocchi generali 🌏 🦪	56
10	La base dei tempi software	57
11	Il protocollo radio	58
12	Adattamento del sonar FALCON al sistema di misura del TS	60

	13 Indirizzi per il software di calcolo e presentazione	dati	63
6	13.1 L' interfaccia operatore macchina		63
	13.2 Il diagramma di flusso del software		68
	14 Il software ausiliario per il progetto		74
	15 Elenco indicativo dei materiali e contenitori		83
	15.1 Materiali per prove preliminari		83
	15.1.1 Parti bagnate per prove		83
	15.1.2 Strumentazione per prove		83
	15.2 Materiali per la costruzione del sistema		83
	15.2.1 Parti bagnate		83
	15.2.2 Parti meccaniche e strutture di contenimento		83
	15.2.3 Componenti elettronici finiti		84
	15.2.4 Componenti elettronici vari		84
	Appendice		85
	Schema a blocchi unità A		86
	Schema a blocchi unità B		87
	Tabella dei livelli unità A		88
	Tabella dei livelli unità B		89
	Trasduttore di emissione ITC 2005		90
	Considerazioni in merito al calcolo di SLgn		91
	Sulle schede elettroniche della serie CS422		92
	Indicazioni sul filtro di banda per l'unità B		93

INDICE DELLE FIGURE

Figura 1 : soluzione originale	7	
Figura 2 : soluzione personalizzata	8	
Figura 3 : campo di misura sperimentale	10	
Figura 4 : schema del sistema di misura sperimentale	12	
Figura 5 : campo di misura definitivo	15	
Figura 6 : curve di sensibilità in ricezione elemento 422/ESB/A	20	
Figura 7: curva dell'errore Eco in funzione rapporto Eco/Riv	23	
Figura 8 : disegno per studio riverberazione di superficie	24	
Figura 9 : curva dell'errore in funzione della velocità del vento	27	
Figura 10 : disegno per studio riverberazione del fondo	28	
Figura 11 : schema a blocchi del sonar FALCON	40	
Figura 12 : curva di risposta trasduttore 1001 ITC	42	
Figura 13 : disposizione meccanica della base Bf	43	
Figura 14 : Curva di direttività della base ricevente Bf	44	
Schemi a blocchi unità A	-	
Figura 15 : sezione trasduttori	50	
Figura 16 : ricevitore segnali	50	
Figura 17 : soglie	50	
Figura 18 : sezione analogico digitale	51	
Figura 19 : trasmissione acustica	51	
Figura 20 : radio	52	
Figura 21 : alimentatore	52	
Figura 22 : sezione rilevamento BRQ	53	
Schemi a blocchi unità B		
Figura 23 : ricevitore segnali	54	
Figura 24 : soglie	54	
Figura 25 : sezione digitale	55	
Figura 26 : trasmissione acustica	55	
Figura 27: radio	56	
Figura 28: alimentatore	56	
Tigura 20. annientatore	50	
Figura 29: schermo modificato del FALCON	62	
Figura 30: schermo di presentazione tipo A e		
comandi del sistema di misura del TS	64	
Figura 31: schermo di presentazione polare e comandi	68	
Figura 32:diagramma di flusso del software		