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13.1 Sonar Design

The various applications of the sonar equations fall
into two general classes. One involves sonar design,
where a sonar system is to be devised to accomplish a
particular purpose. In a sonar design problem, a set of
sonar parameters that will provide the desired perfor-
mance must be found. This can usually be expressed in
terms of range, through its counterpart, by some as-
sumed propagation condition, the parameter transmis-
sion loss.

This selection of parameters in sonar design is beset
with difficulties arising from constraints that are of ec-
onomic, mechanical, or electrical origin. Sonar systems
must often be primarily inexpensive, as in expendable

,units such as sonobuoys. Sometimes they must fit in a

confined space, as in a torpedo, where the maximum
size of the transducer to be used is dictated by dimen-
sions over which the design engineer has no control.
Sonar systems may also have to be designed to con-
sume only a limited amount of electric power, as in a
battery-powered underwater acoustic beacon, where a
limitation is placed on the available acoustic power out-
put and the pulse length. Generally speaking, one or
more of the parameters related to the system itself,
such as directivity index or source level, may be fixed
or limited by practical considerations not under the
designer’s control. The final design is achieved by
“trade offs” and compromises between performance
and achievable values of the equipment parameters. It
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is reached by what amounts to repeated solutions of the sonar equations—by

a trial-and-error process wherein successive adjustments of parameters and = -

performance are made until a reasonably satisfactory compromise is reached.
Complications arise when the desired performance involves two or more of
the variables. For example, a certain search rate, or area searched for a target
in a given time, may be desired; this is a function of both range and beam
width. In such problems, a number of trial solutions of the sonar equations
will be needed to give a “feel” for the best set of conditions. '

Sometimes the fortunate design engineer has a free choice of the operating
frequency, or the operating frequency band, of the sonar under design. Then
the choice will be influenced by the optimum frequency appropriate to the
desired maximum range of the sonar. This choice will be considered in a
section to follow.

In an active-sonar design problem, the design will depend in part on
whether the echoes occur in a background of noise or reverberation. In ac-
tive-sonar systems, the range increases with acoustic power output until the
echoes begin to occur in a reverberation background. When this happens, the
range is said to be reverberation-limited. Beyond this value of output power,
no increase of range is available, since both echo level and reverberation
increase together with increasing power. It follows, as a precept in active-
sonar design, that the acoustic output power should be increased untl the
reverberation level is equal to the level of the noise background at the maximum
useful range of the system. Unfortunately, although this is a useful general
rule, it cannot always be followed because of limitations imposed by the
amount of available power or because of interaction effects and cavitation at
the sonar projector.

13.2 Sonar Prediction

The other broad class of problems has to do with performance prediction.
Here the sonar system is of fixed design—and, indeed, may already by in
operational use—and it is desired to predict its performance under a variety
of conditions. Alternatively, if field trials of a system have already been made,
it may be necessary to account for the performance that has been achieved—a
kind of “postdiction,” in which a numerical explanation is required for the
results obtained. This class of problems normally requires solving the appro-
priate form of the sonar equation for the parameter containing the range.
The passive-sonar equation may be written

TL=SL - NL + DI - DT
= FM

where the sum of the parameters on the right is called (Table 2.2) the ﬁgyre of
merit FM for the particular target referred to in the parameter SL. Similarly,
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the active-sonar equation for a noise background may be written as

2(TL)=SL + TS — NL + DI — DT
= FM

where FM is the figure of merit for the target implied by the value used for
the parameter T'S. The prediction of range requires the conversion 1nto range
of the value of transmission loss that is equal to the figure of merit. The
conversion demands a specification of the propagation conditions, such as
layer depth and propagation path, under which the equipment will be, or has
been, used. With reverberation backgrounds, the transmission loss is usually
the same for both the target and reverberation, and the range occurs implic-
itly in the terms 10 log A or 10 log V, representing in decibel units the
reverberating area or volume, respectively.

13.3 The Optimum Sonar Frequency

Existence of an optimum frequency 'When range calculations at different fre-
quencies are made for a sonar set of a particular design and for some specified
propagation and target conditions, it is often found that the range has a
maximum at some particular frequency. This frequency is the optimum fre-
quency for the particular equipment and target characteristics being consid-
ered. At the optimum frequency, a minimum figure of merit is required to
reach a given range. Hence, the optimum frequency is a function of the
detection range as well as the specified set of medium, target, and equipment
parameters. If the operating frequency is made much higher than optimum,
the absorption of sound in the sea reduces the range; if the operating fre-
quency is made much lower than optimum, a number of other parameters
become unfavorable and act to reduce the range. Examples of such parame-
ters are the directivity index, background noise, and detection threshold
(through a necessarily smaller bandwidth at the lower frequencies), all of
which conspire to reduce the system figure of merit at low frequencies.

Curve AA of Fig. 13.1 shows a range-versus-frequency plot for a hypotheti-
cal sonar. If, by some means, the figure of merit of this sonar is raised by an
amount that is the same for all frequencies, the range-frequency curve is
shifted to BB. Although the range is increased at all frequencies, the optimum
frequency, at which the maximum range occurs, has become lower. The locus
of the peak values of a series of such curves gives the best frequency to use to
obtain a desired range. Its shape and position depend on the system figure of
merit and on the transmission loss and, more importantly, on how both vary
with frequency.

IMustrative example The determination of the optimum frequency can best
be illustrated by an example. Consider a passive listening system that employs
a line hydrophone 5 ft long. It is desired to find the optimum frequency for
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the detection of a freighter traveling at a speed of 10 knots. The noise back-
ground is taken to be the ambient noise of the sea in sea state 3 (wind speed 11
to 16 knots), and the detection threshold is zero decibels. Let the transmission
loss be determined by spherical spreading plus absorption according to the
relationship TL = 20 log r + 0.01f% X 1073, where f is the frequency in
kilohertz and 7 is the range in yards. Based on this expression, Fig. 13.2 shows
curves of TL as a function of frequency for a number of different ranges.
Superposed on the same plot is the line AA, equal to FM at different frequen-
cies for the particular problem at hand, using appropriate values of the pa-
rameters.* At any frequency, the detection range is that for which TL = FM.
This range has a maximum, for the curve AA, of 6,000 yd and occurs at 5
kHz. This is the optimum frequency for the assumed conditions. At this
frequency, the slopes of the line AA and of an interpolated member of the
family of TL curves are equal. At frequencies different from 5 kHz, the range
is less, becoming reduced to 5,000 yd at both 2 and 10 kHz. If, by redesigning
the system, the FM is increased by an amount that is constant with frequency,
the line AA might be shifted to BB; the range will be increased to 19,500 yd
and the optimum frequency lowered to 1.7 kHz. If the redesign is such as to
change the slope of the FM curve, an altogether new optimum frequency will
be obtained.

Analytic method When, as in the example just given, the transmission loss
can be expressed as a particular function of range for the conditions of inter-
est, the optimum frequency can be found analytically. In the equality TL =
FM, the maximum (or minimum) range is obtained by differentiating both
sides with respect to frequency and setting dr/df equal to zero. With the
preceding expression for TL, we would have

TL = 20 logr + 0.01f% x 1077 = FM

* §1.: Table 10.2; NL: Fig. 7.5; DI: Fig. 3.6; DT = 0.
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RAg. 13.2 Curves of transmission loss and figure of merit as a func-
tion of frequency.

On differentiating and placing dr/df = 0, we obtain

d(FM
0.0?fg?’g X 1073 = ‘%
where fo = optimum frequency

7y = maximum range
d(FM)/df = rate of change of FM with frequency, dB/kHz
)

In terms of the more conventional unit of decibels per octave of frequency, we
can write

d(FM) _ fo d(FM)
df laboane /2 df labim

since the octave whose geometric mean frequency is fj is fo/ V2 Hz wide. It
therefore follows that

0.02 d(FM)

vzl T
and the optimum frequency becomes
_ {70.7 d(FM)]lf?
fo= 5 —ar

S~
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where d(FM)/df is the rate of change of FM with frequency in units of decxbels -
per octave, and fo and 7 are in units of kilohertz and kiloyards, respecuvely
Since for a passive system

FM = SL - NL + DI - DT
it follows that

d(FM) _ d(SL) . d(NL) + d(DI) _ d(DT)

af af df df daf

so that the quantity d(FM)/df is the sum, with due regard for sign, of the rates
of change with frequency of the sonar parameters of which it is composed.
Considering the example given above (Fig. 13.2), d(FM)/df would be found to
be approximately equal to —6 + 5 + 3 + 0 = +2 dB/octave. On substituting in
the above expression for fo and taking 7, = 6,000 yd, fo becomes equal to 5.3

kHz. In echo ranging, where the two-way transmission loss is involved, the
expression for f, becomes

e[y

The optimum frequency accordingly depends upon the frequency varia-
tion of all the sonar parameters and is especially sensitive to the frequency
variation of the absorption coefficient. It is not sharply defined, but is the
peak of a broad maximum extending over a frequency range of several oc-
taves. The optimum frequency may be defined in terms other than range, as,
for example; search rate or processing time, as discussed by Stewart, Wester-
field, and Brandon (1). For reverberation backgrounds, the figure of merit is
itself a function of range, and the optimum frequency is not as easily deter-
mined. Normally, an optimum frequency does not exist in reverberation-
limited systems since the frequency-dependent absorption coefficient is ordi-
narily the same for the echo and for the reverberation background.

An extended discussion of the subject is given by Horton (2), who can be
credited with having first recognized the existence of optimum frequencies in
sonar applications. More recently, Stewart, Westerfield, and Brandon (3) have
published curves of optimum frequency versus maximum range for active
sonar detection using more recent expressions for attenuation as a function of
frequency.

13.4 Applications of the Sonar Equations

Sonar Problem Solving

The following are some examples of how the sonar equations may be used to
solve problems in a number of different applications of sonar. The examples
given and the conditions assumed do not necessarily have any practical signifi-
cance, but are selected more or less at random to iilustrate how the equations
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are used in some specific problems concerning the many modern uses of
sonar.

The approach to problem solving by means of the sonar equations is to
select the equation appropriate to a particular problem and then to solve it for
the unknown parameter in terms of the other parameters which are either
specifiable or can be selected, with more or less uncertainty, from specified
conditions on which they depend. Typical values for nearly all conditions of
interest can be found in curves or tables given in earlier chapters.

In an actual design problem the usually straightforward computation
should be accompanied by a plot of echo or signal level, together with the
reverberation and noise masking levels, as a function of range. Such a plot will
indicate most strikingly how the range, determined by intersection of the
curves of signal and background, will vary with changes in level. This plot will
lend confidence to the numerical computations. Once the range is deter-
mined, other quantities of perhaps greater significance, such as area searched
per unit time, can be readily computed.

Active Submarine Detection

PROBLEM: An echo-ranging sonar mounted on a destroyer has a power output of
1,000 watts at a frequency of 8 kHz. Its DI is 20 dB and it uses a pulse length of
0.1 second, with a receiving bandwidth of 500 Hz. Find the range at which it can
detect a beam-aspect submarine at a depth of 250 ft in a mixed layer 100 ft thick
when the ship is traveling at a speed of 15 knots. Detection is required 50 percent
of the time, using incoherent processing, with a probability of 0.01 percent of
occurrence of a false alarm during the echo duration.

soLuTION: The active-sonar equation, solved for TL, is
TL =1%SL+ TS - NL + DI - D)

SL is given by Fig. 4.4, using DIy = 20 dB, as 221; by Table 9.3, TS = 23; by Fig.
11.11 and reducing from 25 kHz by assuming —6 dB/octave spectral slope, NL =
+53 + 20 log (258) = +63; DI = +20; by Fig. 12.6, d = 15 and DT = 5 log (15 X
500/0.1) = +24. Therefore TL = 14(179) = 90. Referring to Fig. 6.7h, for a layer
depth of 100 ft, and'assuming that the transmission is the same as that for a source
depth of 50 ft, the range corresponding to this value of TL is 5,500 yd.

Passive Submarine Detection

PROBLEM: A submarine radiating a 500-Hz line component at a source level 160
dB crosses a convergence zone. Another submarine, located 30 miles away, listens
with a nondirectional hydrophone. Assuming a noise background equivalent to
that of the deep sea in sea state 3, how long an observation time will the second
submarine need to detect the first if it uses incoherent {energy) processing in a
receiver band 100 Hz wide and if a detection probability of 50 percent, with a 1
percent false-alarm probability, is satisfactory?

soLuTION: When solved for the parameter of interest, the passive-sonar equation
is '

DT =8L—-TL - NL + DI
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SL is given as 160; TL is taken as being equal to spherical spreading to 30.mﬁés
plus a convergence gain of 10 dB, or TL = 20 log (30 X 2,000) — 10 = +8‘6';~ by
Fig. 7.5, NL = 66; DI = 0 for a nondirectional hydrophone. Therefore DT =48
By the formula, DT = 5 log (dw/t), with w = 100 (given) and d = 6 (Fig. 12.7), we
find an observation time of ¢ = 15 seconds. The signal energy must therefore be
integrated for this length of time in order for detection to occur at the required

probability levels.

Minesweeping

PROBLEM: A minesweeper tows behind it, for the purpose of sweeping acoustic
mines, a broadband sound source having a source spectrum level of 150 dB in a 1-
Hz band. The mines to be swept are sensitive to noise in the band 100 to 300 He,
and are suspected to be set to be actuated when the level of noise in this frequency
band is 40 dB above the spectrum level of the ambient-noise background in
coastal waters at a wind speed of 30 to 40 knots. If spherical spreading describes
the transmission loss, at what range will the minesweeper sweep (actuate} these
mines?

soLuTioN: Solving the passive equation for TL, we have
TL=SL-NL+DI-DT

Since the spectrum of the broadband source is 150 dB, the level in the sensitive
frequency band of the mines is SL = 150 + 10 log 200 = 173; by Fig. 7.8, NL =
+84; DI = 0 is implied by the nature of the problem; DT = 40 is given. There-
fore, TL = 49. For spherical spreading, this corresponds to a swept range of 280
yd.

Depth Sounding
prOBLEM: A fathometer transducer is mounted on the keel of a destroyer and 1s
pointed vertically downward. It has a DI of 15 dB with a source level of 200 dB at
a frequency of 12 kHz. Assuming that reflection takes place at the sea bottom with
a reflection loss of 20 dB, at what speed of the destroyer will the echo from the
bottom in 15,000 ft of water be equal to the self-noise level of the ship in the 500-
Hz receiving bandwidth of the fathometer receiver?

soLuTION: Because reflection at the sea bottom has been postulated, the actual
source can be replaced by an image source in the bottom at a range equal to twice
the water depth. The transmission loss then will be

TL = 20 log 2d + 2ad X 1073 + 20

where d is the water depth in yards. With d = 5,000 yd and « taken at 1 dB/kyd,
TL = 110 dB. The appropriate form of the sonar equation is

SL — TL = NL + 10 log w — DI

where NL + 10 log w is the noise level in the bandwidth w of the receiver. Solving
for the unknown parameter.

NL = SL — TL — 10 log w + DI

With SL = 200 dB (given), 10 log w = 10log 500 = 27 dB, DI = 15dB, we find
NL = 78 dB at 12 kHz. This would correspond at 25 kHz to a value of NL = 78 —
90 log (25/12) = 72 dB. Referring to Fig. 11.13, the ship speed at which the 25-
kHz isotropic self-noise level is 72 dB is 25 knots.
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Mine Hunting

PROBLEM: A mine of average aspect lies on a sand bottom. It is desired to detect
the mine at a slant range of 100 yd by means of an active sonar located 20 yd from
the bottom. If a pulse length of 10 ms is used, what horizontal beam width will be
required if detection can be achieved at a detection threshold of zero decibels?

soLuTION: The sonar equations for a reverberation background are

SL — 2TL + TS = RL + DT
RL = SL ~ 2TL +§, + 10 log A

A= ct
= 'r—
2
Solving for A and eliminating common terms from the first two expressions, we
obtain

10log A =TS - §,~ DT

By Table 9.3, we estimate TS = —17 dB; by Fig. 8.27 and estimating for a grazing
angle equal to sin~! (2%100) = 12°, S, = —37 dB; DT is given as zero. Therefore 10
log A = 20 dB and A = 100 yd?. Solving the third equation for ®, with A = 100,
r = 100, and ¢t/2 = 1,600 x 0.01/2 = 8 vd, we find & = V8 rad = 7.2°. By Table
8.1, this would require a horizontal line transducer 11 wavelengths long.

Explosive Echo Ranging

PROBLEM: A 1-lb charge is used as a sound source for echo ranging on a subma-
rine. Find the detection range of a bow-stern aspect submarine target in a back-
ground of deep-sea ambient noise in sea state 6. Detection is required 90 percent
of the time with a 0.01 percent chance of a false alarm in the echo duration of 0.1
second. A nondirectional hydrophone with a 1-kHz bandwidth centered at 5 kHz
is used for reception. Let the source and receiver depths be 50 ft in a mixed layer
100 ft thick, and let the target depth be 500 ft.

soLuTiON: For short transient sources, the source level is
SL=10log £ — 10 log ¢,

where E = source level in terms of energy density
t, = echo durgtion

Solving the active sonar equation for TL, we obtain
TL = %(10log E — 10 log ¢, + TS — NL + DI — DT)

The quantities ¢, and DI are given in the problem statement. Since the source is
broadband, and using Fig. 4.19 at 5 kHz, E = 150 + 10 log 1,000 = 210 dB in the
1-kHz receiver bandwidth; by Table 9.3, TS = 10 dB; by Fig. 7.5, NL = 57 dB; by
formula, DT = 5 log (dw/t), using d = 25 (Fig. 12.7), w = 1,000and ¢t = 0.1, DT =
27. DI = 0 (given). With these values TL is found to be 73 dB. By Fig. 6.6¢, the
range is 2,600 yd at 2 kHz; by Fig. 6.7¢, the range is 2,200 yd at 8 kHz; on
interpolating for 5 kHz, the estimated range becomes 2,400 yd. However, it

should be remarked that in this problem the range is likely to be reverberation-
limited instead of noise-limited.

Torpedo Honting

PROBLEM: In an active homing torpedo, a detection range of 3,000 yd is required
on an average-aspect submarine. A detection threshold of 30 dB is needed to



design and prediction in sonar systems / 418

cause the torpedo to “home” on its target. If the torpedo transducer is a plane-
piston array restricted to a diameter of 15 in., how much acoustic power output is
needed at an operating frequency of 40 kHz? The transmission loss is assumed to
be adequately described by spherical spreading and absorption at a temperature
of 60°F, and the self-noise is to be taken equal to the ambient noise of the deep sea
In sea state 6.

SOLUTION: Solving the active-sonar equation for SL, we obtain
SL=2TL-TS+ NL-DI+DT

From Fig. 5.8, TL = 85 dB; by Table 9.3, TS = 15 dB; by Fig. 7.5, NL = 41 dB; by
Fig. 3.6, DI = 30 dB; DT = 30, given. We therefore find SL = 216 dB, and by Fig.
4.4, with DI = 30, the required power output is found to be 30 watts.

Fish Finding

prROBLEM: A compact school of fish containing 1,000 members, each averaging 20
in. in length, lies 100 yd from a fishing boat equipped with a fish-finding sonar.
What will be the level of the echo from this school of fish at a frequency of 60 kHz,
assuming that the transducer has a beam pattern broad enough to contain the
entire school? The sonar projector radiates 100 acoustic watts of power and is a
circular plane array 10 in. in diameter.

soLuTion: The echo level is the left-hand side of the active-sonar equation and is
equal to SL — 2TL + TS. By Fig. 3.6, DI = 30 dB; by Fig. 4.4, SL = 221 dB; with
spherical spreading and absorption, using o = 19 dB/kyd (Fig. 5.5), TL = 42 dB;
by Fig. 9.19, TS = —31 for a single fish 20 in. long; and for 1,000 fish, TS = —31
+ 10 log 1,000 = —1 dB. The echo level becomes 136 dB re 1 uPa. If the
transducer has a receiving sensitivity of —170 dB, the echo would appear as a
voltage equal to 136 — 170 = —34 dB re 1 volt across the transducer terminals.

Communication

prOBLEM: In the sofar method of aviation rescue, a downed aviator drops a 4-1b
explosive charge set to detonate on the axis of the deep sound channel. How far
away can the detonation by heard by a nondirectional hydrophone, also located
on the axis of the deep sound channel, at a location of moderate shipping in sea
state 3% The receiving system uses a frequency band centered at 150 Hz and
squares and integrates the received signals for an interval of 2 seconds—an inter-
val estimated to be sufficiently long to accommodate all the energy of the signal. A
signal-to-noise ratio of 10 dB is required for detection.

soLUTION: Solving the passive equation for TL, we obtain TL = SL — NL + DI —
DT. Recognizing the existence of severe signal distortion, we convert to energy-
density and obtain TL = 10 log Eq — (NL + 10 log ) + DI — DT, where Ej is the
source energy-density and ¢ is the integration time. From Fig. 4.19, 10 log Eqfora
4-1b charge at 150 Hz = 207 dB; by Fig. 7.5, NL = 68; DI = 0dB, DT = 10dB,
and 10 log t = 3 dB are given in the problem statement. Therefore, TL. = 126 dB.
To convert to range, we write (Sec. 6.2) TL = 10 log r + 10 log 7y + ar X 1073
Assume that r, = 10,000 yd. Using the formula (Sec. 5.3) & = 0.1f%(1 + f?),
where f is in kilohertz, we find that & = 0.00225 dB/kyd. Drawing a curve of TL
against 7, we read off, for TL = 126, the value of r = 8,000 kyd, or 4,000 miles.
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An Echo Repeater

PROBLEM: It is desired to build an echo repeater which when suitably triggered
will return a stmulated echo to a range of 1,000 yd equal in level to the echo from
a beam-aspect submarine at the same range. The echo that it must simulate is
obtained with a sonar having a source level of 210 dB re 1 uPa. How much
acoustic power should it radiate? How much electric power will be needed to drive
it if its projector has an efficiency of 50 percent? How much power should 1t
radiate at 100 yd? Assume spherical spreading plus absorption at the rate of 3 dB/
kyd.

soLuTION: The echolevelis EL = SL — 2(TL) + TS = 210 — 2(20 log 1,000 + 3)
+ 95 = 109 dB re 1 uPa, where 25 is the target strength of the submarine (Table
9.3). The simulated echo level is SL.” — TL = SL’ — (20 log 1,000 + 3) = SL” — 63.
Equating the two levels, we find SL’ = 172. By the relation SL' = 171.5 + 10 log P
+ DI, we find 10 log P = Y%; hence, P = 1 watt, if DIy = 0. At 50 percent
efficiency, 2 electric watts will be needed to drive it. At 100 yd, the acoustic power
rises to 220 watts! Note: A practical echo repeater would simulate much more
than the level of the echo; its echoes would have a doppler shift and other realistic
echo characteristics.

13.5 Concluding Remarks

A few words of caution must be said regarding the “pat” solutions of the
problems just given. Everything depends upon the values of parameters as-
sumed in their solution. These values are always accompanied by uncertain-
ties arising from two sources: first, uncertainty that the conditions assumed
are really those of actual interest and importance; and second, uncertainty
that, under these conditions, the chosen values of the parameters are valid.

The first of these two sources of uncertainty involves the specification of the
conditions, some natural, some of human origin, that the engineer feels will
be representative of the environment and the target in and against which the
system must operate. Here extreme cases will often need to be worked out in
the hope that conditions beyond the selected limits will not be of practical
significance. The secortd uncertainty arises from the presently crude state of
underwater sound as a body of quantitative knowledge. Even when all the
necessary nature and target conditions are specified, the associated acoustic
parameter is likely to be uncertain by several decibels or more, simply because
of insufficient quantitative information.
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