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For many sonar applications, the sensor outputs of a hydrophone array are sampled at a rate significantly

higher than that required for waveform reconstruction when digital beamforming is used. The reason for

this is that the number of synchronous, or “natural,” beampointing directions is proportional to the

beamformer input rate. This paper presents an implementation of a. digital beamformer that achieves the

desired synchronous beams while minimizing the sensor channel sampling rate requirement. The technique

employs zero padding of sensor data followed by digital interpolation filters to achieve vernier beamformer |
delays. Interpolation filtering can be done either at the beamformer input or output to minimize |
processing requirements. The resulting structure realizes a hardware savings since both A/D converter and |
cable bandwith requirements can be traded off against digital processing complexity to achieve an optimal

partitioning.

PACS numbers: 43.60.Gk, 43.30.Vh

INTRODUCTION

A beamformer can be interpreted as a spatial filter
which operates on the outputs of an array of sensors in
order to enhance the amplitude of a coherent wavefront,
which is propagating in 2 medium such as the ocean,
relative to that of background noise and directional in-
terferences. Conventional time-domain beamforming
is accomplished by appropriately delaying and adding
the shaded outputs of an array of hydrophones as indi-
cated in Fig, 1. The shading or weighting of the sensor
outputs is done to improve the beam’s spatial response.'
Typically, the beam delays are matched to the antici-
pated propagation delays of a pressure field incident
from a specific direction. The beamformer function
can be implemented either in analog or digital hardware.

A digital implementation requires that the output of
each hydrophone be sampled in time prior to beam-
forming as shown in Fig. 2. These sets of discrete
data samples are then time delayed and summed in the
beamforming operation. It is well known that a signal
must be sampled at a rate consistent with Nyquist cri-
terion® in order to permit reconstruction of the wave-
form. In particular, it is desirable that samples of the
beam output be computed at this rate. For a low-pass
signal, this minimum sampling rate is twice the highest
frequency of the signal spectrum.

However, also to be considered in regard to the sam-
pling rate at the beam input are the requirements on the
quantization of the time delays 7,(n =1,...).. These de-
lays are quantized to increments of the input sampling
interval. For a given quantization there is a discrete
set of “look directions” which can be achieved exactly.
These exact beams are referred to as synchronous, or
“natural,” beams, The number of synchronous beam-
pointing directions increases with the input sampling
rate,

For many applications, digital beamformers require

an input rate which is significantly higher than that re-

quired for waveform reconstruction in order to achieve
an adequate set of synchronous beampointing directions?
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In some cases, this high sampling rate requires a pro-
hibitive number of A/D converters. Also, the high sam-
pling rate may impose stringent requirements on the
bandwidth of the cables which connect the A/D converters
and beamformer, Thislatter problem canbe particularly
significant if there is a large physical distance between
the A/D converters and the digital processor,

An obvious alternative is to form nonsynchronous
beams using the coarsely quantized time-delay setavail-
able at the low sampling rate needed to reconstruct the
waveform, Usually, this alternative is rejected because
of the relatively poor beam patterns of these “approxi-
mate” beams.? In fact, the quality of the nonsynchro-

_ nous beams can be improved only by increasing the in-

put rate.

This paper presents another approach which requires
samples at a rate consistent with the Nyquist criterion.
The desired time-delay quantization associated with the
high sample rate is achieved by digital interpolation of

- the sampled data. Hence, additional digital computation

capability is required to perform the interpolation func-
tion. However, as discussed here, the interpolation
can be performed efficiently using Finite Impulse Re-
sponse (FIR) digital filters,

This principle is a simple one, but its consequences
are extremely significant; that is, the hardware impact
of the high data'rate on A/D converter and cable band-
width can now be shared with the digital processor in
order to optimize system implementation.

An even more interesting aspect of this approach con-

- cerns the relationship between beamforming and inter-

polation. Digital interpolation can be viewed as a two-
step process™* where the data sequence is first zero
padded and then processed with a linear, digital inter-
polation filter. Since the beamformer operation is lin-
ear, the interpolation filtering can be done either at the
beamformer input or output as illustrated in Fig. 3.

When the interpolation is done at the beamformer in- -
put [Fig, 3(a)], the operation of the beamformer is

. equivalent to the conventional approach shown in Fig. 2,
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where the output sample rate is much lower than the
input sample rate, However, when the filter is imple-
mented at the beam output [Fig. 3(b)], the beamformer
operates in a fundamentally different way: The beam-
former processes the zero-padded sequences, and the
input ~nd output sample rates are identical, Down

san . .g to the rate required for waveform reconstruc-
tion is achieved in the interpolation filter,

In subsequent discussion, it will be shown that this
latter implementation is more computationally efficient
if the number of simultaneously formed beams is less
than the number of elements. In addition, interpolation
at the beam output permits a substantial reduction in
the memory required for delay sum beamforming.

In the following sections, the concept of digital inter-
polation beamforming is presented. Expressions are
also derived for the error introduced by the interpola-
tion operation, The results indicate that this error is
controllable and quite small for an interpolation filter
of “modest” design.

I. BEAMFORMER DESCRIPTION

Beamforming is realized by delaying and summing

the shaded outputs of the array of sensors. If the beam
out s denoted b(t), then
W
b(z)=2fxn(t_7n}’ {1)
n=

where 7, is the time delay required to compensate for
the delay experienced by a coherent wavefront propa-
gating from a specified direction to the nth sensor of an
array of Ny sensors, and x,(.) denotes the shaded out-
put voltage of the nth sensor. (The shading weights,
without loss of generality, are suppressed to simplify
notation.) The specified direction to which the time de-
lays (7,) phase the array is referred to as the Maximum
Response Axis (MRA).

A digital implementation of (1) requires that the
sensor outputs be sampled and, thus, that the time

FIG. 1. Beamformer and antenna array of
hydrophone elements.
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delays be quantized to the accuracy of the sampling
interval. Let 0 denote the fine sampling interval needed
to achieve the delay quantization requirement, The
sampling interval needed to satisfy the Nyquist criterion
is A, where, as mentioned previously,

a>0, (2a)
Corresponding to 6 and A are the sampling frequencies
fo =06 andf,= 4", where

Sa<fo .

In subsequent analysis .it is assumed that 6 is an
integer multiple of A, Specifically,

(2b)

A=LHb, (8)

where L is an integer such that L >1, Also, time delays
are quantized to an integer multiple of 8, i.e.,

Ta=M,5, (4)

where M, is the rounded integer part of the quotient
7,071,

The beamformer output samples can be computed at
an interval K6, where K is an integer not equal to L.
However, in order to simplify the discussion, it is
assumed that the digital beamformer computes b(ma),
where

N
b(ma)= Z:x,,{{mL -M,)6]. (5)
n=
Extension to the general beamformer down-sampling
case, where the beam output interval is L"'Ka, is
readily made for all the results given in this paper.

A graphical interpretation of (5) is given in Fig. 4.
A/D converters provide samples of the continuous wave-
fronts at the interval 6, The digital beamformer intro-
duces the delays necessary to sum the data samples
along the indicated lines. Output values d(ma) are
computed at the rate f, needed to reconstruct the beam
output.

For the conventional approach, the total sampling
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| FIG. 3. Two implementations for inter-
polation beamforming: (a) interpolation
filter before beamformer, and (b) inter-
" polation filter after beamformer.
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requirements are N f, samples/s. Digital beamformer
computation requires Ny(Ng - 1)f, real additions/s,
where N is the number of beams.

For the interpolation technique, the Nz sensors are
sampled at the interval A, The vernier sampling in-
terval 6 is realized by interpolating these samples using
the procedure outlined in Appendix A. In this case, the
beamformer output is

Ng

5(ma>=22,,[(mL -M,)5], (6)

where the symbol (~) is used to denote the interpolation
approximation. Interpolation is achieved intwo steps.**
First, L - 1 zeros are padded between each sample to
form the sequence v(m0), where

for m=ﬁ,iL,¢2L, o
y - otherwise.

x,(mL1A),

Va(m 6)={0 (7

This padded sequence is filtered with an interpolation
filter, identical for each hydrophone, to obtain %,(m?0),
which approximates x,(m6). The accuracy of the ap-
proximation is determined by the interpolation filter.
Figure 5 illustrates this interpretation of the digital
interpolation process, an interpretation which is par-
ticularly useful for describing the new beamforming
technique,

Figure 6 shows how the beamformer operates on the
interpolated sequences. The timing is identical with
that shown in Fig. 4. The difference is that the beam-
former operates on data obtained from the interpolation
filter rather than that directly obtained from the A/D
converter. This difference permits greater multi-
plexing of A/D converters. The price paid for the in-
creased A/D converter multiplexing capability is that
additional operations are required to implement the
interpolation filters. However, the computation is sim-
plified since most of the input values are zeros.
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Interpolation beamforming requires a total A/D rate
of only Ngf, samples/s. Thus, the bandwidth require-
ments are reduced by a factor of L, representing a
possible significant reduction in complexity and cost.
As before, the beamforming operation requires Ngz(Ng
- 1)f, real additions/s. However, in order to imple-
ment the interpolation filters, Ng(N./L)f, real multi-
plies/s, and Ng(No/L - 1)f, real additions/s are re-
quired, where N is the number of filter coefficients.
The tradeoff is between reduction of bandwidth and
A/D requirements, and digital processor requirements.

An alternate implementation of the approach, which
has 2n advantage if there are more hydrophones than

TSNV N
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FIG. 4. Input/output timing relationship for conventional time-
domain digital beamformer.
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l ZERD INTERPOLATION
ol ' PAD FILTER
x,(t) T
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be: |, obtained by interchanging the beamformer

and the interpolation filter, is shown in Fig. 7. The
two implementations are equivalent if all of the inter-
polation filters are identical since filtering and beam-
forming are linear operations that can be interchanged,
For this approach, the beamformer operates on the
Sequence v,(m0) to obtain an output sequence B(m o) at
the time interval 6. Downsampling occurs in the inter-
polation filter rather than in the beamformer. The
interpolation filter smooths this sequence to obtain an
accurate representation of the beamformer output b(m a)
at the time interval a. As for the previous implemen-
tation, the sensor sampling requirement is Nzf, sam-
ples/s. However, since interpolation is done at the
beam output, NyN.f, multiplies/s and Np(No - 1)f»
additions/s are required.

Although the beam output must be computed at the
high rate f;, the input to the beamformer consists pri-
marily of zeros. Beamformers exist which are micro-
pror—=ammable,’ and they can be programmed to take
adv.. age of the periodically recurring zeros. Hence,
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FIG. 6. Input/output timing relationship for interpolation beam-

forming where x,(mA) is obtained from interpolated hydrophone
outputs.

the higher beam computation rate does not ’necessarily
impact on the computational requirements of the beam-
former. Clearly, since f, =Lf,, the placing of the
filter at the beamformer input (output) has a computa-
tional advantage if there are more beams (hydrophones)
than hydrophones (beams).

For delay sum beamforming it is also possible to
take advantage of the padded zeros in another way in
order to reduce storage memory. The sensor data
need only be stored at the interval A, This method re-
sults in a decrease in memory size requirements by
the factor L.

INTERPOLATION FILTER IMPLEMENTATION

As discussed in Appendix A and Sec. III, the accuracy
of this procedure depends on how well the interpolation
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FIG. 7. Input/output timing relationship for interpolation beam-
forming where b (mA) is obtained from interpolated beamformer
outputs.
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FIG. 8. Interpolation filter unit
sample response for given
design conditions.

filter approximates an ideal low-pass filter. In partic-
.ular, the filter must attenuate undesired replica spectra
associated with the zero-padding process. The goal is
to minimize the passband and stopband ripple of the
filter response while using a reasonably small number
of filter coefficients.

Both Infinite Impulse Response (IIR) and Finite Im-
pulse Response (FIR) digital filters can be designed
which possess the desirable characteristics. However,
FIR filters can be implemented nonrecursively and offer
a number of advantages in this particular application,

If the interpolation is performed at the hydrophone out-
puts, the input sequence consists primarily of zeros,
Since a nonrecursive filter does not “feed back” the out-
put data, the filter can be designed to ignore the period-
ically occurring zeros and to perform only the required
multiplications. If the interpolation is performed at the
beamformer output, the filter output need only be com-
puted at the lower sampling rate f,. Again, since there
is no feedback, only those computations which are nec-
essary to produce the desired output values are required,
These advantages are lost with a recursive filter since
the values fed back and combined with the input are gen-
erally nonzero, In addition, the computational and
storage requirements can be minimized by implementing
the overall FIR filter in stages as described in Refs. 3,
4, 6, and 7. The application of symmetric FIR filters
to the interpolation process also affords the advantages
of introducing a linear phase delay and, hence, no phase
distortion. Also, by taking advantage of coefficient
symmetry, the number of computational operations is
reduced.

As an example, a symmetric FIR filter has been de-
signed for the following values of the system design
Parameters:

J. Acoust. Soc. Am., Vol. 63, No. 2, February 1978
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fa=20 kHz,
fs =200 kHz,
fu=5kHz, and
Ng=31,

where f;; denotes the upper passband cutoff of interest.
The filter coefficients are synthesized using the Parks
and McClellan design algorithm® for

fun= 5/200
and
fin= 15/200,

where fy, y and f; y denote the filter’s upper passband
edge and the lower stopband edge, respectively, normal-
ized by f,. Equal ripple is specified for both bands.

The filter impulse response is shown in Fig. 8, and the
corresponding filter frequency transfer function is

given in Fig. 9.

Since L is 10, the throughput rate is 620 kHz. For
symmetric FIR filters it may be possible to relax this
throughput requirement by approximately a factor of 2
by taking advantage of the filter coefficient symmetry.
In addition, this rate can be reduced further by designing
multiple-stopband FIR filters as discussed in Refs, 4,
6, 7, and 9.

Since the FIR filter does not have the ideal low-pass
filter characteristics, error is introduced at the beam-
former output. This error is induced by the finite pass-
band and stopband ripple and can be controlled by proper
filter design. However, reduction of ripple generally
requires an increased number of filter coefficients.
Thus, a tradeoff between accuracy and computational
complexity arises.



130 R. G. Pridham and R. A. Mucci: Novel approach to digital beamforming 430

.20 =

30 F

RESPONSE (dB)

40

60 ! !
10 100 1000

FREQ (Hz)

10000 : 100000

FIG. 9. Frequency characteristlca‘for 31-coefficient interpolation filter.

I1l. ANALYSIS

In this section, expressions are derived for the
Fourier transform of digital beamformer output se-
quences. First, a conventional time-domain digital
beamformer structure is discussed. Then, a structure
using the new interpolation technique is considered.
These results show how the interpolation error can be
interpreted in terms of the passband and stopband ripple
of the interpolation filter acting at the beamformer out-
put. The expressions derived in this section make use
of fundamental results obtained in Appendix A. It may
be advisable for the reader to review Appendix A before
continuing with this section. It should be noted that
lower-case symbols represent sample sequences while
upper-case notation is used for the corresponding
Fourier transforms. '

A. Conventional digital beamformer

The Fourier transform of b(m4) given by Eqgs. (5) and
(A2) is

Blexp(iwa)] = ”i: b(mA) exp(—im wa)

= ﬁ % i xq[(mL —M,)0] exp(—imwa)} A

Ma. =

(8)

The results of Appendix A can be used to evaluate the
sum on m. Specifically, from Eqs. (A9) and (A14),

N

B[ exp(iwa)]=L"! g ZE exp[-i(wA - 2nk)M, L]

xX Jexpli(wa - 2nk)L-1]}, (9)

where X,(.) is the Fourier transform of the sequence
x,(mbd), i.e.,

X [exp(iwb)] =‘z X ,(mb) exp(—imwb) , (10)

If the sampling interval A is adequate for reconstruc-
tion of the sensor outputs, then the overlap of the k=0
spectrum and the % #0 spectra is negligible. In this
case, for the frequency range of interest (i.e., 0=w
=274"!), one has

Ng
Blexp(iwa)]=L-! Z; exp( - iwAM, L*)X [exp(iwA LY)],
n=

(11)
This approximation is exact if the x,(f) are precisely
bandlimited. :

B. Interpolation digital beamformer

For interpolation beamforming, the beamformer out-
put is b(mA) as given by (6). The Fourier transform of
b(ma) follows from Eqs. (A9) and (Al4), i.e.,

a N
ﬁ[ex;.‘v(s'u.u'.\}l]=I.,'1 g i exp[- i(wa - 27k)M, L]

xX {expli(wa - 2nk)L-']}, (12)
]
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where Blexp(iwa)] and R, [exp(iwa)] are the Fourier

transforms of b(mA) and X(m¢6), respectively. Equation

(A6) shows that X Jexp(iwd)] can be expressed as

X [exp(iwd)] = Hlexp(iwb)]V[exp(iw?)], (13)

. where H[exp(iwd)] is the transform of the interpolation
_ filter unit sample response h(m6), and V,[exp(iwd)] is

the transform of the zero-padded sequence v, (m6) as
defined by (7). It can readily be shown that

V. lexp(iwd)] =X, [exp(iwd L)].
Substitution of (13) into (12) yields

N
Blexp(iwa)] = L= Z 2 exp[-i(wa - 2nk)M, L]

x H {expli(wa — 2mk) L]}V, {exp[i(wa - 27R) L]} .

(15)
The structure suggested here consists of processing
' the zero-padded sequences v,(m &) with the interpolation
filter and then computing the beam output at the rate
ok

(14)

A second structure is suggested by noting that the
filter transform in (15) can be removed from the sum
onn, i.e,,

Blexp(iwa)] = L-! :Z‘; H{expli(wa - 27k)L"']}

NE
X 2 exp[-i(wa - 2nk)M, L'V {expli(wa - 2ak)L-]}.

(16)
This corresponds to performing the beamforming opera-
tion on the zero-padded sequence at the high rate f;,
and interpolating the beam output sequence.

In order to examine these results further, (14) is
Substituted into (15), yielding

a L-1 Mg
Blexp(iwa)] = L= Z; Z; exp[- i(wA — 27k)M, L]
[T n=

xH{expli(wa - 27k)L-']}X [exp(iwa)]. (17)
The last step follows since
Xo{expli(wa - 278) |} =X, [expliwa)].
Equation (17) can be expanded as

é[exp{iw&}] =L7 i exp(—iwaM, L-Y)H[exp(iwAL")]

xX [exp(iwa)]+ L1 f:: i X [exp(iwa)]

Xexp[-i(wa — 2nk)M, L) H{exp[i(wA - 2rk)L-']}.

(18)

The % #0 terms overlap the #=1 term in the desired
rl'etluen(:jr range (0 =w =27 A™!), unless H[exp(iwd)] is
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precisely limited to that band. This is true even if the
xn(t) are precisely bandlimited in the desired range.
QOut-of-band aliasing occurs, in general, for the inter-
polation beamformer since the FIR interpolation filters
have nonzero stopband ripple. However, as discussed
in the previous section, this ripple can be made quite
small if a reasonable number of coefficients are used.

The effects of the interpolation errors on the beam-
pattern can be investigated using (18). For example,
a single-frequency beam pattern was computed for the
set of 31 symmetric coefficients described in the pre-
vious section. These coefficients produced an upper
passband cutoff frequency of 5000 Hz for a sampling rate
of 200 kHz. A line array of 21 omnidirectional elements
shown in Fig. 10 was considered. The beam pattern
was computed for a conventional beamformer with inputs
sampled at 200 kHz for the first “synchronous” steered
direction off broadside. This direction corresponds to
the value of 8 for which

(d/c) sind =f3',

where d denotes the interelement spacing, ¢ denotes the
propagation speed, and # is the angle measured from

(19)

broadside, For a half-wavelength spacing at the cutoff
frequency f,, where fy = 5000,
2c 2fy 1
sinf=—==-—=_—, 20
Ne o 20 I

Hence, 8=2.8°, and the corresponding beam pattern
is shown in Fig. 11 as the solid .ine,

The beam pattern which would result from interpola-
tion with 31 coefficients was computed using (18) for an
interpolation ratio of 10:1. This is shown as the dashed
line in Fig, 11. A comparison of the two beam patterns
shows that the aliasing associated with the interpolation
has negligible effect on the mainlobe and no significant
effect on the sidelobe structure. Beampatterns were
computed for other steered directions ranging from
broadside to endfire for both conventional and interpola-
tion beamforming. In all cases there was no practical
degradation of beam-pattern structure.

The beam pattern was also computed using the non-
synchronous delays which result from a sampling fre-
quency of 20 kHz. This beam pattern is also shown in
Fig. 11 for comparison. It should be noted that there
is appreciable degradation in both mainlobe and sidelobe
structure. The apparent increase in sidelobe level re-
sults from the partially incoherent addition of the sensor
outputs for a source on the beam’s MRA.

IV. SUMMARY AND CONCLUSIONS

A technique for digital beamforming has been pre-
sented which relaxes the A/D conversion rate and, cor- .
respondingly, the data transmission bandwidth require-
ments, These hardware savings are offset by the ad-
ditional hardware required for digital interpolation.
However, the extra digital processing can be minimized
through the use of the appropriate canonical interpolation
beamformer structure and computationally efficient
implementations of FIR filters. Storage memory can
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FIG. 11. Comparison for various beamformer techniques (90° corresponds to broadside).

also be reduced for delay sum beamforming from that
required by a conventional time-domain digital beam-
former. The degradation introduced by interpolation
has been analyzed and has been shown to be small, for
reasonable length filters, in comparison to that incurred
for nonsynchronous beams formed with the same sensor
s:  'ing rate.

This beamformer implementation, incorporating an
interpolation filter, offers a potential hardware savings
since both A/D converter and cable bandwidth require-
ments can be traded off against digital processing com-
plexity. However, such system parameters as number
of array elements, system bandwidth, number of beams
formed simultaneously, cable bandwidth requirements,
digital memory, reliability and maintainability, etc.,
must be considered in order to achieve an optimal par-
titioning of hardware cost.

ACKNOWLEDGMENTS

The authors wish to express their appreciation to
A.C. Callahan for helpful discussions on this topic,
and also to G. F. Siletchnik for developing the computer
program used for beam-pattern prediction.

APPENDIX A

This appendix gives definitions and results which are
used to derive the beamformer output spectrum in Sec.
III. The notation is consistent with that given in Ref.

3. Sampled sequences are denoted by lower-case letters,
Z transforms are denoted using the upper case.
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First, the Z transform of a sequence x(nd), n=0,
t1,..., is defined as
X(Z)= 2: 2(nDd)Z", (A1)
The Fourier transform of x(nA) is obtained by evaluating
X(Z) on the unit circle, i.e.,

X[exp(iwa)] = 2-: x(n ) exp(~ inwa) , (A2)

N=.

A sequence v(nb) is now considered, where 6=L"'A,
with L being an integer greater than 1 [which is obtained
by zero padding x(nA)]. That is,

v(nb) = {’Sf” Gk f)?;et;:r?s: L i (A3)
This sequence has the Fourier transform
V[expiwb)] = name:u(nﬁ) exp(— z'm‘uﬁ)
= X[exp(iwa)] . (A4)

Figure A-1(a), (b), and (c)illustrates the relation-
ship of the transforms X[exp(iwa)], V[exp(iwb)], and
X[exp(iwd)] for L =2, It should be noted that V[exp(iwd)]
is identical to X[exp(iw8)], except for the presence of
replica spectra at w=x2n1/6, 67/6,.... The sequence
v(nd) can be transformed by a filtering operation into a
sequence which approximates x(n6). Specifically,

2(nb) = Z‘: h(mb6[(n —m)8], (A5)
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FIG. A-1. Example of Fourier
' transforms for the sequences
(a) x(na), (b) v(nd), and (c)
x(nd) for the case L=2 (i.e.,
:I:l: '[.Ll- :l__]: :I'I- .I:l. e
L ' : EG
J (e) X(explics]) ?
)
:[:l: + - ' :r"_lz . . . ¢[e—|-
Fid r i w
5 5
where k(m®6) is the filter’s unit sample response, The The desired result is obtained when H[exp(iwd)] is
transform of (n3d) is chosen as an approximation to an ideal low-pass filter
R & which passes the desired spectra but suppresses the
X[exp(iwd)] = Z #(nd)z" undesired spectra, Figure A-2 illustrates this proce-
=t dure for the example given in Fig. A-1, It should be
- H[exp(iwb)|V[exp(iwd)] observed that X[exp(iw8)] and X[exp(iw8)] are identical
; except for perturbations due to ripple in the passband
= Hexp(iwd)] X[exp(iwa)], (A8) and stopband of H[exp(iw6)].

where H[exp(iw6)] is the Fourier transform of k(mé).

The filter design procedure given in Sec. II imple-

(a) Viexplicob])
1
o I % i R i 1) el bta il il o
2 2 o4
a a
(b) H{explicd])
FIG. A-2. Example gi filter-
ing operation where X [exp(iw6)]
approximates X [exp(iwd)]. (a)
W il Viexp(iwb)l, (b) Hlexpliwd)],
"'""""‘""'- t = Ay ¥ t t == and (c) X[exp(iwd)].
(¢) Reexplicsd])
N A
_;x - T + ; AR e T
g 5
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ments H[exp(iwé)] with a symmetric, FIR filter. For
this type of filter, one has

%(nd) = Zk(mé}v[(n m)6]

m=. M

= 2 h(m &){o[(n = m) 8]+ v[(n+m)6]}- R(0)(nd) .

(A7)
Since h(md) is symmetric, H[exp(iwd)] is constrained
to have linear phase.

The final result to be derived concerns the effect of
shifting and down sampling a sequence w(nb). Consider
the sequence

y(mo)=wlnL -p)s] - (A8)

w~hich has the Fourier transform

- Y[exp(iwa)] = A_i y(na) exp(~ :'nQA)

- Z wl(nL -p)6] exp(—inwa) .  (A9)
This expression can be written as

Y[exp(iwa)] = ;

h#L, % 2L, %

w[(n —p)0] exp(—in L-'wA)

=Y wl(n-p)o]S,exp(-inLwa),  (A10)
Nu.©
where
1, n=0,2L,z2L,.
Sn= {0 otherwise : (A1)
Since S, has the representation
L=
SysL Zﬂl exp(i2rknL-t), (A12)
{al1) has the form
Y[exp(iwa)]
L L=
Z wl(n -p)6 [L" Z;exp(i%knL"]exp(—in L-lwA)
LENE =
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1 5[5 vl

- p)6) exp[- in(wb - 27kL" ‘)]] (A13)

Using the substitution m =n -p yiélds
Y[exp(iwa)]

L=1
=Lt g exp[— i(wA — 2nk)pL-1]

X i w(m 8) exp[—i(wa - 2nk)m L]

fi=_ =

=L} 2 exp[-i(wA - 2mk)pL-|W{explwa — 21k)L"1]} ,

(A14)
which is the desired result.
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