
OFFICE Of' ;WAVAL RESEARCH
CONTRACT N5 ORi-76 PROJECT ORDER X

c.:) MR-364 -903

TECHNI1CAL MEMORANDUM
NO. 27

GORRELATORS -FOR SIGNAL RECEPTION

By

JAMES J. FARAN VJR.

ROBERT HILLS 11JR.

SEPTEMBER 15, 1952

ACOUSTICS RESEARCH LABORATORY
DIVISION OF APPLiLI) SCILN

HARVARD UNIVERSITY- GAMIBR!!L3E o,%SISo,

Best Availjable COPY



<I,

Co~ntx,n.t N'iorj.-76, rx,"kto,, Ordo, X

Technic,,i Vmor,*indum , No,, f",

by

.James J Faran., Jr. and Robert Hills, Jr.

September 15, 1952

SMArY

Correlators (multipller-averagers) are analyzed and
comared with detectors (rectifier-averagers) of various
power laws from the point of view of their possible use in
signal reception systems, Comparison is made in terms of
signal-to-noise ratio for the limiting case of small input
signal-to-noise ratio and long averaging time, Of the de-
tectors, the square-law is found to be slightly superior
for determining the presence of a small signal in a noise
background, while if two samples of the signal In incoher-
ent background nolses are available, although the correlator
cannot improve the signal-to-noise ratio, it does have the
advantage that no constant terms independent of the signal
appear at its output The design of electronic sorrelators
Is discussed, and several oractical circuits are.given, Two
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but much simpler to construct, are also analyzed. Both of
these are very slightly inferior to true correlators in out'-
put signal-to-noise ratio.
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PREFACE

An investigation of the possible application of corre-

lation techniques to acoustic receiving systems is under

way at this Laboratory. In this first technical memorandum

on the subject are presented findings which pertain especi-

ally to electronic correlators, including theoretical

analysis and practical circuit design° Consideration of

applications to specific acoustic systems will be reserved

for a subsequent memorandum.

This study of correlation techniques was suggested by

Professor F. V. Hunt, and the authors are greatly indebted

to him for his helpful and stimulating guidance of the

project. The authors also gratefully acknowledge the

assistance of Professor Harvey Brooks, who demonstrated

to them many of the methods of analysis used herein, and

of Professor David Middleton, who contributed his time in

many helpful discussions.
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James J. Faran, Jr. and Robert Hills, Jr.

Acoustics Research Laboratory, Harvard University

rMIUTO7CTION

There are many possible criteria for comparing the effi-

cacy of various systems for the reception of acoustic signals.

Many of these depend upon the particular type of system being

considered. However, we have attempted to keep our considera-

tion general rather than specific, and have chosen a'a cri-

terion of system performance the output signal-to-noise ratio,

and in most cases have concentrated attention on the important

case of very small input signal-to-noise ratio. In order to

evaluate signal-to-noise ratios theoretically, we must make

use of certain statistical methods for dealing with the random

functions we encounter. While these methods are by now rela-

tively well known, the following sections will serve as a

review of some of the basic ideas, as well as a definition

of our notation,

Matheaatial Tratmnt of Rnd ?unctl ons I

A particular example of a random noise voltage is, of

course, an explicit function of time and could, in principle,

be so represented. However, such a representation would be

of no physical interest, since each example of random noise

is different and could never be exactly repeated. We must

instead make use of certain average properties of all noises

belonging to the same class. For example, if we are concerned

with the output of an electronic noise generator, we focus

-1-
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attention on what would be the average properties of all the

outputs of a large number of identical noise generators, The

outputs of all these noise generators comprise an oimble of

random functions; the complete ensemble is called a random

2Z2oeu (as soon as certain mathematical properties of the

ensemble are specified - finite mean-square amplitude, for

example). The description of the random process is then

formulated statistically, anid we can speak, for example, of

the probability that at some time one of the noise voltages v

will lie between v and v+dv. A more complex probability func-

tion will give the probability that at some time one of the

noise vo.-tageos will lie between 1 and vldv1 and that at a

defin.4te time later the same noise voltage will lie between

v, and v2 +d'v2  The random process can be completely described

by a sufficiently complex set of such Ia obi ensite,.

From these usually complicated functions, however, may be

derived certain average properties which are much mere use-
ful in descrlblng and measuring the noise these include the

me".an value, me-an-square value, power spectrum, and correlation

functior For example, if P(v)dv is the probability that the

noise voitage v(t) lie; between v and v4dv, then the mean value

o' the noise is
<- 0 YP(v)dv,

and Its mean- square value is

t)>- fv V2 P(v)dv.

Of course 7P(v)dv = 1, since P(v) is a proper probability den-

sity. In Im. the above examples, the average values are denoted

by angular brackets, < > , to indicate that they are statistical

averages, computed from the orobability densities which describe

the ensemble. In most experim.ental measurements of random funo

tions, on the other hand, as when a d c voltme0ter Is used to measure
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the mean value of a noise voltage, what is measured is a time
average of one member of the ensemble. Time averages, which we
shall indicate by overlines, can be represented mathematically

as

Tt) .T-lim I * v(t)dt

and -

If none of the probability distributions which describe a ran-
dom process changes with time, the process Is said to be jtjojr

If each member of a stationary ensemble of random functions is
typical of the ensemble as a whole, that is, if each member func-

tion can be expected, as time progresses, to go through, with

the proper frequency, all the convolutions of any of the member

functions, the ensemble Is said to be e d 2 An important

theorem, the ergodic theorem, states that for an ergodic ensemble,

time and statistical averages are equal, i e V if v(t) is a mem-

ber of an ergodic ensemble,

v(t) - <(t)

It is not usually possible to prove that a given physical system

is ergodic,4 the abovo description of the ergodic property may

serve as a guide in deciding whether or not it is possible to

make such an assumptIon, The ergedic theorem allows us to re

place measurements which in our mathematical model represent

averages over many members of an (ergodic) ensemble with long-

time-average measurements of one member of the ensemble. All

the stationary ensembles with which we shall be concerned In

this memorandum are assumed to be ergodlco

MA2U&j Distrlbutlon

It can be shown tht all the probtb'.lity d(itribtnlonm of

thermal and shot noise, the types most orton nricoutiterott in
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electronic circuits, are normal or gaussian distributions.
3

(These types of noise are said to belong to a gaussian random

process.) Other fairly common types of noise are also more or

less accurately described by the gaussian distributions.* The

gaussian probability density (for the amplitude of the voltage

v) is

P(v) L -V212 (i/2)

where c2 is the mean-square atplitude of the voltage, It will

be useful later to determine the average of the fourth power

of a gaussian-distributed variablet

V>. 1 v4 e-V2/29 2
V<* dv

-_-L(2&)2 u4 •-u2 du

4

3c,(2)

In general it may be shown that
< .2m> 2z (1.3)

and, because the distribution is here symmetrical

*Note, however, that if gaussian noise is passed through a non-
linear device, the output is no longer gaussian. In Fig. 1 are
shown the probability distributions for gaussian noise, for the
output of a multiplier when the inputs are incoherent gaussian
noises, and for the output of a "squarer" when the input is gaus-
sian noise, The latter two are very definitely non-gaussian
For further examples, see Rice's paDers and Middleton's paper,
cited in footnott 1.



P(v)

GAUSSIAN NOISE

P(v)

SQUARE OF A GAUSSIAN NOISE

P(v)

PRODUCT OF TWO INCOHERENT GAUSSIAN NOISES

Fig. 1.1 Probability densities for the xmplitude v of a geussian
noise, of its square, brnd of the product of two incoherent
gaussian noises of the same amplitude.
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Repre,31ntations 21 Noise ,Yota

There are several ways in which mathematical represent t~i~n

of noise voltages may be written, each of these being especially

useful in different cases, As we have noted, a particular example

of noise might be represented by an explicit function v(t), how-

ever, a complete ensemble must be represented by a parametTic

function of the form

V(al'a 2 '" ° aR't)M

A particular example is thus characterized by a particular numer-

icall choice of the parameters al,a 2 , R (which may be infinite in

number). The statistical character of the noise is completely

specifie if we know the probability density of the parameters

2, in general given by a function

P(aIa 2  aOR)-

The a's are called random variables and constitute the statst1-

cal parameters of the ensemble.

?heie ideas will become clearer in the light of several

exazples We consider first noise which is made up by the

suiprposition of a number of individual events., each of wh1'h

na' te explicit time-functional form f(t) but with dlfferent

startirg times tk., all of which fall inside some long time in-

terval ?. Then the noise voltage is given by 1 3

v~t) ,, , f( t-t k )  .- ,

k-i

A particular choice of a family of R ptirticuior vluos of t( tv

a particular example of noise. The tks corrspond to tjAv alo,

and are the statistical parameters of tho or-inmblo Thoe 0o t
ensemble consists of ar infinity of oxr~mpl.t, 1.10 Yq_ i ? !c
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which each of the parameters tk takes on all possible values
within the time interval T, within which the noise is specified

bV Eq. (1.5). In the most usual case the probability density

P(tlotk, otR)dtloodtkoodtR - dtlodt ko dtR0

tk R TR

Another representation which will be used frequently is the
Fourier series representation. Consider an example of noise in
the time interval T. It may always be expanded in a Fourier

series:

V(t) CanCOSw nt + bn sinint, (1.6)
n=O

where (n := If we omit the term for n - 0, the average
noise voltage vanishes, whith is the case of usual interest.
The an's and bn'S , infinite in number, are the statistical para-

meters corresponding to the a'so In order to specify the statis-

tical character of the noise, we must know the probability distri-

butions of the coefficients an, bno In the case of gaussian noise

it is customarily a that the an' bn obey the gaussian dis-

tribution law (Eq. (1.1)) and are statistically independent, so

that the probability density function may be expresse as a

product a b2

~2P(a I o0 aup,blo °0 bo) = e \2e

Applying the properties of the gaussian distribution (Eqs0 l3

and 1,4)), we find

<8n2> b 2 nn O < aam> =<bnbm> - O,nimo

(17)
Another method of representing a random function is te

assume that the function vanishes outside the long interval

-T/2 <It < T/2. It can then be written in Fourier integral form
as
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v(t) = A(f) ej2nft df, (18)

where the complex function A(f) is the voltage spectrum. Now

by the Parseval theorem,
4

T/2
v2(t) dt = f 2(t) dt =J IA(f)1 2

-T/2 1

This leads immediately to a definition of the ingnit a*

of the random process, for, dividing by T and going to the limit

T-.-CD, and using the fact that IA(f)1 2 is an even function of f

(because v(t) is real), we have

lim (/ v2 (t)dt - t) = W(f)df

where the intensity spectrum is defined as

lim 21(L1

W(f) = T--AT 0

In this representation the functions AMf), which are different

for each member of the ensemble, take the place of the statisti-

cal parameters.

A very useful method of expressing the properties of ran-

dom processes is in terms of correlation functions. The -

,oreai function of v(t) is defined as

R(17) = v(t)v(t-C) = <v(t)v(t=)> 0

In terms of the representation of Eqo (lo6), this is

*Intensity has the dimensions of voltage squared. We use the
term "intensity spectrum" rather than "power spectrum" to
avoid the necessity of defining the resistance in which the
power is dissipated,
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aD C
R()= [a amos wmt + bm sin mt ]

° [anCOSwn(t-Z) +bnsinujn(t-e)] >o

Using the relations of Eq. (17), we have

R[ (V) >Cos cun t Cos wn(t-r)

+<bn sin wnt sinwn(t-t].

= <an cos wnTO (1-9)
n=n

The autocorrelation function thus consists of terms equally

spaced in frequency,, If we pass to the limit as the interval
of definition of v(t) is made infinite in length, the spacing
2n/T becomes smaller and <an>---* W(f)df, where W(f) is the power
spectrum, In the limit, the sum can be replaced by an integral,
and we have

R(r) f W(f) cos 2nfr df o (1-10)

0

The above is a demonstration of the Wiener-Khintchine theorem,5

which states that, with complete generality, the autocorrelation

function is the cosine Fourier transform of the intensity spec-
trum. The inverse transformation is

W(f) = 4 f R() cos 2rft dgt (1-11)

0

The value of the autocorrelation function fort= 0 is obviously
the mean-square value of v(t), while the value of the autocorrela-

tion function of a random process forr--a is the square of the
mean value. Autocorrelation functions also have the properties
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b e Vt tetn

ani has tho property that p(O) a 1,

C oas-corr1&tion .jcjqiI are defined, in an analo Ius woy,

B'R) V, v( t) V, t-- r ) -< Vv ~2t-V) >

They have the properties that

R(r) )R (02-r)

-+ee R.. ,' and R22 (r') are the autocorrelation functions of

t' and. v 2 (t) respectively

I For an excellent general introduction to the mathematical
description of noisey see Lawson J. L, and G. E- Uhlenbeck,
The{kjl 3McGraw-Hill Aew York, 1950 Chap. III,
A more comprehensive and detailed treatment is contained in
Sr 0, Rice's two papers, "The Mathematical Analysis of Random
Noise. 2a , 282-332 (194A), and 2A A6-
1,58 (19&), while for a general account of noise and signals
in nonlinear systems, see Middleton, D,, "Some General Re-
sults in the Theory of Noise through Nonlinear Devices."
&AL3r . .Aqjj], = 5, &45-A98 (1948) A fairly detailed blbliog-
raphy, including these and ot:rer references.listed here, is
given at the end of this memorandum,

2, In more mathematical language, an ensemble is ergodic if it
is stationary, and there is no subset of the functions in
the ensemble with a probability different from 0 and 1 which
is stationary, For more complete discussions of the ergodic
property, see Shannon, C, E5 , and Wo Weaver, jhq, ML ematicA
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Theory o go au atQa , The University of Illinois Pret'.'
Urbana, Illinois (19a9) p 51, and James, He M , N B".
Nichols and R. S. Phillips, fter SjLbA10
McGraw-kll, New York, 1947; Chap, V -

3. Middleton, D., "On the Theory of Random Noisei Phenomenono-

logical Models. 1," I. AR P-y1. jU , Ii13-1152 (191),.

A Wiener, N t Fourier ra, Dover, New York, p, 70,.

5 Wiener, N "Generalized Harmonic Analysis " " 1
., 117-25 (1930); Khintchine, A,,, "Korrelationstheorie
stationirer stochastischen Prozesse," . n 2,
60j-615 (193A),
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Iii To_- TOIS RATIO AT THE OUTPUT Q " A CORRELATOR

In a-ptiaotical applIcation it Is not possible to perfors
the infinite time averaging which, as indi,-attd in tht provio;os
section, is an essential part of the computaition of a eorreiA.
tion function The best we can do electronically is to use
some sort of low-pass filter as an averrging network. BecAusq
the averaging cannot be extended over an in-finitely long tin*,
there aprei,rs at the output of the averager, in addition to
the correlation function we desire to measure, a fluctuating

voltage which we can call the output noise It is of great
interest then, to estimate the amplitude of this output noise.,
and especialiy what might be called the output signal-to-noise

?1he :ean. square noise (or error) in the output of a
practical correlator can be found as the difference of the mean-
square of the actual output and the square of the correlation
function being zeasured For example, if R (t , t) is the actual
outVat of the correlator., which is, of course, a function of
tl-e, and if R(t) - B (r, t) is the desired (signal) portion of
the output, the mean-square noise is

[Rg (',t) R(V) 32 R2 (rt) - 2R(r)R (L~t) + R2( )

- R (e,t) -,2 2 (t) * R(

R2  t% 2  2
R 2, B(r, t) - (r)

This procedure will be used below to compute the output .noise

If f(t) is the niyw't to a filter, the output 1_ given by

• / f t" )g( t,- I) d't"!" '" -'I:
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which can 'be wrItten, after a change of. varir la

0

vihore g(t) is 'the zaisbttn4 taQtt Qn of the £iitQ: , ind is
the -rpertitsl for azr?~ c

gA -0, foyr t O~ &rn- f tft a(2.21

wh ti, -C Ltelator 'is use to an~ wt ' itsxorre-ltionfutir~

:t~ i rtut toi the filter ist tie nrodlilt hnmctlon

V :i tz vjn, write the Output 0f thot Corr elh bor a.$

TtS rMwIr-Square Value

If w , cr-npe t in the sec:na ie ,raJ. to t" to distiguish be tween
meo: v-ixlab es fl -integral-on -tcn w-i-te the,- above as a donubt

Interchainging the order of summitng (integrating) and averaging,
we have

R",( t 'r) 7 7(tJ)g(tt') L~-''V"~4vtt'vtt-)d~d"
9 . 0
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The brackets enclose what might be called a third-order autocor-

relation function. In Appendix I. an expression is derived for

the third-order autocorrelation function of a gaussian random

process,* in terms of the ordinary autocorrelation function° By

comparing the above expression with the first form of Eq. (A1o3)

we see that we can write
v~tt )~t- -rv~t-t.v~t. t,- =R2(T) + R2 (twi-tD

+ R(t"t-t 1+,)R(t1'-t v-v)

where R(t) = v(t)v(t-V), the (ordinary)autocorrelation function

of v(t)>, Then

-- : -1D2( ti - g(t)g(t") [R 2(r) + T12(t"-t )

+ R(t" t - t .R(t"f- t 1- Vdt dtw

To simplify this expression, we note that 'the variables of inte-

gration appear in the correlation functions only as tlt', and
we therefore make the change of 'variables

whenc.-

2 2

The Jacoblan of this transformation it

*At this point we must restrict our consideration to gaussianly-
distributed random signals as well as to a gaussianly-distributed
background noise. For sinusoidal signals for example where
V(t-t'), v(tot'r), etc. might consist ol a random noise plus a
sinusoil, the reduction derived in Appendix I is not valid. Our
results below for the limiting case of small input signal-to-
noise ratio will not be greatly in error however, regardless of
the character of the signal since the distribution of the gaussian
noise plus small signal wili still be very closely gaussiano
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so dt'dt" - (1/2)d 9 b

The regions of integration are indicated in Fig. 2.1. We see

tAll

t"t

Fig,, 2,1 Regions of integration in the t',t", and in

the - *1-plane s.

that, n must be integrated froml to + cand , from - to +w.

We then have

R2(t,) - (1/2) dnf g(4)g(A±3 )tR2 (r)

go +I ()R + R( ;+ V)R(V -Cd (2~3

The 1 -integration can be performed directly, since n appears only

in the gfunctionso We define the transformed weihting function

OD

w(~)= (/2y g(-g(2 -)dn ,

which, after substituting t 2 becomes

W(3)= g(t)g(t*5)dto

2

The lower limit, which might just as well have been taken as -D,

simply serves to remind us that the weighting functions g(t) vanish
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for negative arguments, With that in mind we can write

D
w( )- f g(t)g(t+' )dto

It is readily seen, however, that when)>O,

0

and) furthermore, that (2.4 )

W(;) o

Equations (2,A) are the most useful form for evaluating the

transformed weighting function, It is readily demonstrated

tha t

7 w()d(
In terms of W(3), as defined above, we can write Eq0 (2-3)

*R2(t,) R 2 (T) + /w(p) [R2 ) +R)

" GD

The mean square of the correlator output noise is then
CD

R2(t,) R2 (t) , f w(P)[R 2( ) + R(4+tR(5-)]d; (2.6)

O

and, taking as the signal the average output of the correlator,

the mean-square output signal-to-noise ratio is

(I)R2(t)o (2. 7)
ou CD

f w( )CR2(j) + R(5+t)R(;- )3dX

When the correlator is used to measure a cross=correlation



I

M2 7 -16

function, the input to the averager is the product function

and, using the first form of Eq. (Al4), we can show by the
same method as above that the mean-square output signal-to-

nolse ratio is

(S/N)out

7w(5)[RAA B ) + RAB( BA(
-, ( 2 8 )

WeIhtlag Funotiona

The evaluation of a correlator's output signal-to-noise

ratio depends upon the weighting function of the averager which

IS used, and more specifically, in the above formulation, on the

transformed weighting function. The weighting functions and

transformed weighting functions for three simple averagers will

be given below.

The weighting function of a filter network is its impulse

response, or output for a delta-function input, initiated at

time t = 0, and may conveniently be found, for stable filters,

as the Fourier transform of the voltage response spectruim of the

filter, which is simply the complex ratio of the open-circuit

output voltage to the input voltage, For the low-pass averager

of Fig,. 2.2, the voltage response

spectrum is

ei R

and the weighting function ise

readily determined to be

RC eFig 22,, RC Averaging

0 0 t <\o Network.
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Then from Eqs. (2.4), we find the transformed weighting func-

tion to be

w( ) - _.i.. e , for all (24,9)
2RC ,

A simple and quick comparison of different averagers may be

made on the basis of their responses to a unit step input,,

Just as the unit step is the integral of the unit impulse, the

response of a network to a unit step is the integral with re-

spect to t of the impulse response. Calling the unit step

response U(t), we have, for the RC network,

U(t) a-1 - e - t /A c  t> 0.

In the same way, these three functions may be determined

for the critically damped RLC cir-

cuit of Fig. 2.3. The voltage

response spectrum is

ei I + J L w- L'C'" R C

and critical damping occurs when
R'I - -1V%_ C , making the voltage '!: O
spectrum for this case I

1Fig. 2.3o Critically damped

(1 + j .1 /CA)2 RLC averager. (R- /C).

The weighting function is then

=~t 1 t e- t / R t ' '
g~) 4(RC,)2, t O

and the transformed weighting function is

WM 2R'I+111- I 2R C I
A ~w( ) - [2R'c'+I~~ 3/B

16(R 'C')
2

The unit step response is
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U(t) = 1 (1 + t//2R1C1)e ti 2R C '  t. 0.

The response of a finite-time "perfect averager" to an

input function f(t) is

TI f(t-tt)dtv,

0

where T Is theilength of the interval over which the average

is computed. By comparison with Eq. (2,J) we see that the

weighting function is

g(t) - I/TI, 0 < t <TI

= 0, t <0 and t TI

No realizable network has this weighting function; it is, how-

ever, mathematically convenient for comparison purposes, and,

if necessary, its operation could be approximated by various

arrangements, one of which is shown schematically in Fig. 2.Ao

2 K

-- W't _LR ourP-Ul"
DELAY T, INVERTER _-

•-f Ct-T) -

Fig. 2.4.. Circuit for Approximating Operation
of a Finite-time Perfect Averager.

The transformed weighting function is

w() T (l - Mt ") I T 1

0, T

and the unit step response is

U(t) = t/TI 9 0 < t < T ,

= i t l,
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These three averaging systems may be compared by examining

their step responses after adjusting their time constants so

that their noise-reducing properties for wide-band input noise

are the same. Equation (2,6) gives the mean-square value of

the noise at the output of the averagero Now the range of Z

over which a correlation function R(V) is appreciably differ-

ent from zero is roughly equal to the reciprocal of the signal

bandwidth. Similarly, the extent of the transformed weighting

function w(J) is inversely proportional to the width of the

pass-band of the averaging network. For good smoothing the

pass-band of the averager must be small compared to the band-

width of the signal. Usually, therefore, the principal contri-

bution to'the integral of Eq, (2.6) comes in the region where

w(J) is not substantially different from w(O). In this case,

then, Eq0 (2.6) may be replaced by the approximate form

?r 2I R2(5+( -)R;-)l
-) W(0)

The mean-square noise output for a given (wide) input spectrum

is therefore proportional to w(O)o Numerical values of the

time constants of the three averaging networks discussed above

were chosen so that w(O) 'was the same in all three cases, 6nd

the resulting weighting functions, transformed weighting func-

tions, and responses to a unit step are plotted, to the same

scale, in Figs. 2-5, 2.6, and 2.7, respectively. It is to be

noted that the rise times are roughly equal when the noise-

reducing properties are equal. There does exist an advantage

in using the optimum filter for a given input function; this

will be discussed in a following section.

!Qreao utM t signal-J2-19s Rtg 2gfJ Zap

The correlator output signal-to-noise ratio was shown in

Eq0 (2.8) to depend on the transformed weighting function of

the averager and on the auto- and cross-correlation functions
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of the inputs. Using the transformed weighting function given

in the preceding section for the RC averager, and the autocorre-

lation functions derived in Appendix II, we can reduce Sq. (2.8)

to a much simpler expression, subject to a few restrictive condi-

tions which often pertain. We assume first that the two inputs

to the correlator are made up of various combinations of two

random noises n (t) and n (t), of equal amplitude, and a noise

signal s(t), all three being statistically independent and

having the same rectangular spectrum of half-width ,,f and center

frequency f These signals then have the autocorrelation func-

tions

(Z cos2Trf 0

R (T) = N(la&Tat) co S2-rf
2 2 TAfTV
R (r) - S(4 4 n )r~') cos2-f T

S alTaf -

Where N and S are the mean-square values of the noise and the

signal, respectively. We assume that the correlator uses an

RC averager, and we use the transformed weighting function

given in Eq0 (2o9). Now, as we noted above, if the pass-band

of the averaging network is small compared to the bandwidth

of the signal, we may assume that the principal contribution to

the integral in Eq. (2.8) comes in the region where w(;) is not

substantially different from w(O)o Subject to this assumption

that l/RC << f, Eq, (2.8) becomes (with Toset equal to zero, to

give the maximum signal output, the signal s(t) being assumed

present in both channels without relative delay),
R2 (0)

(S/N)out A0

7oRAA( RBB(') + RAB(;)RBA(P)]d

We consider four different modes of operations



g~t

t
FINITE-TIME PERFECT AVERAGER

Q(t)

t
RC LOW-PASS NETWORK

9(t)

CRITICALLY- DAMPED RLC NFrWOR



7W(e)

FINITE-TIME PERFECT AVERAGER

W(0)

RO LOW-PASS NETWORK

W(f)

CRITICALLY- DAMPED RLC NETWORK

Fig. 2.6. Transformed weighting functions for three averagers.
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F,.NTE-rME PERFECT AVERAGER

U~tt

RC LOW-PASS NETWORK

U(t)

CRITICALLY- DAMPED RLC NETWORK

F19. 2.7. Unt step responses for three averagers.
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I. Both inputs s(t): In this case we have the maximum

output signal-to-noise ratio which occurs in the measurement of

an autocorrelation function or thelsignal-to-noise ratio" for

the measurement of the mean-square of s(t)o We have

= S = R ) R v s(s j$)cos2nf

ABo 2f " os 2f ; oso

(S/N) out 2C
sc (s.~innf) 2 cos22f 05d~fC 2WT~30

where b = 2nfo We see for the first time here the very general

and well-known result that the output mean-square signal-to-noise

ratio is proportional to 'the product of the input bandwidth and

the output time constant.

II Both inputs [n3(t)+s(t)j, Here the correlator is

simply used as a square-law detector to determine the presence

of a signal in noise, We have

RAA() RBB( ) = RAB( ) = RA() = (N+S)

cos2-rfo o

The d-c output in this case is RA(0) = N + S. We take as the

output signal simply S, assuming that the d-c. voltage N can be

biased out, or ignored. The output signal-to-,noise ratio is

then

(S/N) out 2 2 cn
. ,c2 "£~~L,(sin.2%j f22tf dRC j iD2T~f; . rf~d

2S2 RC Aw

-r(N+S) 2
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and,,if S << N9

(SIN) =2RQW (S/N)2-
out = r in

III, On aptln1(t)si), other .Input _Lr t h

The correlator is used here to determine the presence of a

common signal in two different samples of signal in noise..

AA(3) = BB() = (N+S) 0 cos

ad(SIN) AS 4 2 RC A"

out =(N+S)2+ S2 ] 
1

In the limiting case where S << N,

(SIN)0 ~ -4- - (S/N )2
S/out  in

IV. On2 Input + s(t)]) other inoutV/ 7' s(t)%

Here a standard sample ot' the signal of constant mean-square

amplitude N is cross-correlated with the signal and noise. We

have

RAA(3) (N+S) ( , )cos 2Tf

RB = N (sin2r,) cos2T7foSBB(3 - 2-~f 0

R in2rrf ;, os 2Tf
RAB(T = RBA(I) = ISN° -s2iifj 0 J

and (S/N)t 
4NS RC L

[N(N+S) + NS]n

which becomes, if S<<N1
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,:v~p 1n able 4,21.

y ric Ind O2 Irnum Ftort

T r, aey' the signa.l to-noise ratios derived theoreti-

S the pre ed ing sctin-n are never achieved in practice
t a-°.e4 in the dierivation that the d-c signal in the out-

rut :.f thp svsrarer had bu:ilt up to its ultimate value" while with
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signal, then one is not obtaining the greatest possible output

signal-to-noise ratio because increasing the time constant will,

for a while, cause the noise to decrease faster than the signal,

It is therefore important to consider the time-functional form

of the signal as it appears at the input to the averager, and

the general problem ox specifying the optimum type of averager

for detecting the presence of that signal in noise. We here

define the o j (for a signal of finite duration)

as that one which produces he reatest pek-gig -to-Tm-
noise ra A its =M It is not necessarily true that

such an averager produces at the same time the most easily

discernible signal (in the presence of noise) to the eye. It

is reasonable to assume that this is a fairly satisfactory

criterion of detectability- however, and it is mathematically

convenient. Woodward,2 by applying the theory of inverse proba-,

bility, has specified much the same criterion for extracting the

greatest possible amount of information from a radar signal.

Other optimum filter criteria have been used, for example

(1) minimization of the mean-square error6 (best possible re-

covery of the j of the input signal) and a closely related

method of minimizing an arbitrarily defined "distortion,"7 and

(2) minimization of the mean-square error in determining the

average value of a noise wave (or of measuring a steady d-c

voltage in the presence of noise) when there is only a finite

time available for the measurement(
8

It has been shown by Van Vleck and Middleton9 that the

filter which gives the best output peak-signal-to-rms-noise

ratio when the input noise bandwidth is much larger than that

of the signal pulse is simply that filter whose weighting func-

tion is proportional to the time-functional form of the signal

backwards.* (The result was expressed originally in spectral

language.) This ootimuP filter is called the "matched" filter.

*The weighting function of a physically realizable passive net-
work must vanish for negative arguments. This makes difficult
the problem of constructing a passive filter to match a pulse
whose time-functional form extends a considerable distance
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Their mathematical proof wil, l not be repeated here, it was

applied by them specifictaly to the care of a pre-detection

filter on the basis of maxiimzing the post-detector signal-to-

noise ratio, but -exactly the same arguments may be applied in

this case, Van Vleck and Middleton state further that if the

optimum pre-decction filter is used, no post-detection filter

can improve the signal-to, noise ratio further, 1 0  In a correla-
tion system, on the other hand, pre-multiplication filters are

used (with broad-band signals) mainly to determine the shape of

the correlation function being measured, by establishing the

signal spectrum, the signal at the output of the correlator
being determined in many cases by the relative delay of the

two input signals rather than by modulation of a carrier,

The greatest part of the signal-to-noise ratio improvement by

-riIering must then be obtained in a post--multiplication filter.

We here define the "efficiency" of an averager for a signal

of finite duration to be the output peak-signal-squared-to-mean-

7cire-noise ratio divided by that same quantity for the matched

C 1[ tr Efficiency thus is a numeric which runs from 0 to 1,

O- .r averaper efficiency differs from that defined by Eckart I I

In that we assume that the background noise has always been

p rksent at the input to the filter, while he assumed that the

n~ose and signal were applied simultaneously., i 2 We feel that

our definition is more realistic for the case where the reoeiver
1!:- "'on" continuously and signals arrive at the Input from time

to ti-e. The efficLencies have been computed by very straight-

forward methods, by finding the peak value of the transient

response of the filter, squaring that value, and dividing by

the transformed weighting function of zero argument, which.as

either side of its peak or center. However, one method has been
stiggested for constructing an active filter which can have weight-
Lng functions that do not necessarily vanish for negative argu-
ments (see Refl 7 above). If the pulse is symmetrical, there
is an advantage of 3 db in using the symmetrical weighting
function over using (the physically realizable) half of it,.
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we showed above, is proportional to the mean,,osquare noise out-

put, when the averager band-pass is narrow compared to the in-

put bandwidth, and normalizing. The illustrations below are

thus valid onky for relatively wide-bahn _u background nis.o

Averager efficiencies for detection of a rectangular pulse of

length T0 are plotted in Fig. 2°8. for the three averagers

whose weighting functions were given above. The abcissa, x, is,

for the finite-time perfect averager, T1 /Toj for the RC averager,

2RC/To; and for the critically damped LRC circuit, 8RIC'/To0 It

can be seen that the time constant of the averager must be

adjusted carefully to the pulse to achieve the best signal-to-

noise ratio, and particularly so in the case of the finite-time

perfect averagero

Averager efficiencies for detection of a "backwards" expon-

ential pulse having the t~me-functional form

f(t) e t/T , t ! O,

= 0,t > 09

are plotted for the same three averagers in Fig. 2Q90 In this
graph, x is RC/T0 for the RC averager; T1/T0 for the finite-time

perfect averager; and 8R'CI/T for the critically damped LRC

circuit. The backwards exponential pulse was chosen to match

the RC averager, and the advantage of this filter over the others

is clearly apparent. As here defined, averager efficiency is

proportional to relative peak-signal-squared-to-mean-square-

noise ratio, so that a decibel scale can be used to compare

the different averagers. A decibel scale has therefore been

added to the right-hand side of Figs. 2.8 and 2.9, The differ-

encesbetween these three filters in the region near x = 1 are

thus seen to be rather small in decibel measure.

By reference to Figs. 2.8 and 2,9 it may be seen that the

degree to which a filter is optimum is closely related to the

extent to which its weighting function matches the pulse being
detected0 One would therefore expect that an RC averager, for
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example, would be a relatively poor averager for the detection

of the presence of a signal pulse having the form of a correla-

tion function such as that shown in Fig, 2,10o This is the

autocorrelation function of random noise having a spectrum
equal to the intensity response of a tuned circuit with Q 8.
Approximate calculations have been made comparing the RC
averager with the best time constant for the purpose with. the
matched symmetrical (physically unrealizable) filter. For
fairly high Q's it was found that there Is an improvement in
the peak-signal-squared-to-mean-square-noise ratio of approxi-
mately a factor Q This improvement factor di.nnishes to unity
as Q--O It is noteworthy that the optimum filter for such a
correlation function is not an averager but a band-pass filterl
This is the best filter for detecting the presence of correlation
but not the best filter for an accurate measurement of the corre-
lation, functio, wnich requires a d-c zeasurement,

Incidental to the above calculations, the relative efficiency

of an RC averager for the detection of a sinusold of frequency
W /2PY in wide-band noise has been ooznzuted and Is displayed In
?Fg 2 ll aa * function of the product RK4o The usaz1 ua
efficiency occrz at WC - 1/wo0; this may be taken a5 an approxi-
mate best valtae of the tiv constant RC for the detection of a
correlation function of the form of PFi.f. 2-t0, wher, Wo/2- Is
the freqiency of the modulat-d cosine wave of the correlotion
function As it Anpears at the output of the Mi4tipller

It is 'possible that the flltrrlrig procesi mht be re-
placed by a correlation method, egpecial.y for the pInrrose of
achieving nonphysically realizab!2, welghting functions. If an
electrical function generator could be constructed to generate

the desired weighting function, the operations of multi1licatlon
and integration indicated in Eq, (2.I) could be performed elec-

tronically, (This would require at least an, approximation to a
finite-time perfect averager to perform the indicated Integra-

tion.) This method would be somewhat complicated by the fact
that each different possible time of arrival of a signal would
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have to be investigated separately, while, with a passive filter

we have simply to observe the output as a function of time and

note at what time a signal appears. Either a multichannel sig-

nal processer or a receiver which would record the received

signals for later high-speed playback and processing might make

such a system feasible.

I For other analyses which use somewhat different methods,
see Fano, R. M., t Q&sg -. i Ratio GPX~tg
P2gLt£f , T. R. No. 186 (February 19, 195). and
Davenport, W. B., Jr., r.ti %n
Qahs ati_.I . Tn R No 191 (March 5, 1951,
both from the Research Laboratory of Electronics, Massa
chusetts Institute of Technology, Cambridge, Massachusetts.,

2, James, H, M-1 N B, Nichols and R. S. PhillipsTh
Servomeghanisms, McGraw-Hill, New York, 197, Chap ILo

3. Because of the similarity of the first of Eqs. (2.4) to
the definition of an autocorrelation function, w(,) has
sometimes been called the autocorrelation function of the
filter, Cf. Davenport W. B, Jr. R. A Johnson and
D. Middleton "Statistical Errors In Measurements on
Random Time iunctions," jo Ap.,_.h . 377-388
(April 1952)

4, MiddletonVD"Rectification of a Sinusoidally Modulated"1 Proc- IJRoE 'A
Carrier in the Presence of Noise, 1.69.
lA67-1477 (December 1948).

5 Woodward, P. Mo1, "Information Theory and the Design of
Radar Receivers," Pr", L.J. 39, l521-1524 (December
1951) 'Woodward, P. Mo, and I. L. Davies, "Information
Theory and Inverse Probability in Telecommunications"

r s e (London) -4 Part III, 374
TMach 195'2).,

6. Wiener N,, Extroatio.nterolation nd Smoohing
f Sta Lonary Time Series,' John Wiley, New York, 1950o

Esp. Appendixes B and C. Also Bode H. Wo, and C. R.
Shannon, "A Simplified Derivation of Linear Least Square
Smoothing and Prediction Theory," PQQ a 3§ 417
425 (April 1950)o

7o Eckart, Carl, The Theoor of Noise Supressinb Linear
Filters, University of California Marine Physical
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Laboratory of the Scripps Institution of Oceanography
(October 8, 1951).

8. Davenporti W. B., Jr R. A. Johnson, and De Middleton,
"Statistical Errors in Measurements on Random Time
Functions "1 J. AppI. Phvs. 23, 377-388 (April 1952),
Appendix 'B.

9. Van Vleck, J. H . and D. Middleton, "A Theoretical
Comparison of the Visual, Aural, and Meter Reception of
Pulsed Signals in the Fresence of Noise, J. Appl. Phys.
1, 940-971 (November 1946).

10. See also Middleton, D. "The Effect of a Video Filter
on the Detection of Pulsed Signals .Lfn Noise," J. AP .
Ph. 21, 734-740 (August 1950).

11. Eckart, Carl, The Measurement and Detection of Steady
A-C and D-C: Signals in Noise University of California
Marine P hysical Laboratory of the 3cripps Institution of
Oceanography (Octobor 4, 1951).

12. Davenport, W. B.9 Jr., R. A. Johnson, and D. Middleton
(footnote 8) also consider the error in a measurement
of the average value of a quantity when there is only a
finite observation time available; that is, when the
average must be read a -inite time after the function to
be measured is applied to the averager.
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III

ELEC TRONIC CORRELATORS

A correlator is assumed to consist of a multiplier and
an averaging network or output filter. We have discussed

filters in the preceding chapter, and therefore the problem
of the design of a practidal correlator reduces to that of
designing the multiplier . An electronic multiplier is an
electronic circuit whose instantaneous output voltage is

proportional to the product of the instantaneous values of its

two input voltages. We have given consideration only to elec-
tronic multipliers although there are a good many other methods
of performing the multiplication of the two input signals. It
was desired to keep the apparatus simple and rugged, and to

make it possible to use various electrical filters as averag-
ing networks. For these reasons, wA have not used dynamometer
or wattmeter systems (where the average force between two coils

carrying currents proportional to the input signals is propor-
tional to the average product of those signals). Sampling

correlatorsI or digital correlators, 2 although inherently
capableof considerable accuracy, fall into the class of labora-
tory instruments or computing machinery, and are too complex

for purposes of signal reception. One electronic multiplica-
tion scheme reported in the literature3 has also been considered

more complex than necessary for these purposes. In this arrange-

ment, the frequency of a carrier is modulated in proportion to

one of the multiplicands and its amplitude is modulated in pro-
portion to the other. The resulting signal is fed to a phase
discriminator whose average output is proportional to the

required product. A good many other possible schemes of multi-

plying two voltages will come to mind,4

Two types of electronic multipliers have been considered
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in some detail; these are multigrid-vacuum=tube multipliers, in

which signals applied to different control grids of a multigrid

tube are directly multiplied together in the plate current, and

multipliers based on the "quarter=difference-squares method" of

multiplication, which reduces the problem to one of addition and

squaring.

MIA Li:nl

This circuit makes use of the type 6AS6 pentodeo0 In this

tube, the total (cathode) current is controlled mainly by the

grid voltage, and the fraction of this current which reaches

the plate is controlled mainly by the suppressor voltage.

The plate current then depends, in a sense, upon the product

of the grid and suppressor voltages. A multiplier can be

built in the form shown in Fig. 3.1. To adjust this circuit

for accurate operation, it is necessary to balance the d-c grid

and suppressor voltages, and the a-c (signal) grid and suppressor

voltages, first for each pair of tubes, and then from pair to

pair,, While this arrangement permits perfect balancing-out of

error terms up to the second order, the large number of adjust-

ments makes it unwieldy to use. Fortunately, some simplifica-

tions can be made in the multiplier when it is used as a signal

processing device. We need a multiplier whose average output is

proportional to the avrae rodt of the inputs, not necessarily

one which generates the instantaneous r o Furthermore, we

are concerned only with input signals which have zero average

value, and which are usually symmetrically distributed in ampli-

tude. For these reasons, it does not matter if the input signals

themselves appear at the output of the "multiplier," since they

will be averaged out and will contribute no error. Thus, if it

is recognized that the output is to be averaged, we may use the

circuit of Fig. 3.2., which uses only two tubes. A detailed

*The use of this type of circuit was first suggested to us by
Dr. Peter Elias of Harvard University. Dr. Elias has applied
for a patent covering multiplier circuits of this general type.
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analysis of this circuit will best demonstrate how it works. A

schematic diagram of a practical circuit of this type is shown

in Fig, 3038

In tube No,, 1, we assume that the total cathode current is

ikl = a01 + allegI + a21eg1 + 00

and that the fraction of that currept which reaches the plate

is

CL a IP 1 /Iy = b0 1 + b11 es + b 2 1e sl + 0 00

where egI Is the signal voltage on the grid and e31 is the sig-

nal voltage on the suppressor. Then the plate current is

a OlbOl+ a0 1b1 1el+ a1 1 bl1 eglesl+ aojb 2 1 e 1

+ 2 + ab 2  + a 2 e 2
a2 1b0 1 eg1  a1 1b2 1 gles 1 21 llgl sl

* a2 1 2 1 e2e .3

In tube No. 2, with the sign of *g2 opposite that of egl

I a a + 2 +
k2 02 - a g2 a 2 2 g2

b1 +2 b1  + b e2  +
2 b02 12 es2 22es2

and

p2 a02 D0 2+ a02b12e 2 - '12b02g 2 - 12b12e + 02 22es2

2 a2 + a2b1e 2 e  +a 2 2
a22 b0 2eg 2 - a1 2 2 2 eg 2 s2 22 12 92 s2 22 b2 2eg 2 S2

The difference of these plate currents is then

(a01b0 1 - a02b0 2 ) + (a 0 1 b1 1 se1 - a 0 2 b 1 2 es2+ allb 0 1 egl+ a 1 2 b0 2 eg 2 )
) 2 b 2 )2

(a1 1 bileglesl+ a2b12g2es2) + (a 0 1b 2 1esli , a0 2 22 s2 )+a 2 1 b 0 1 egl
22+2 +Cb e

a2boe2) + (allb2 1 eglel+ a1 2 b2 2 g 2 e 2 ) + (a b e2 e

a e2 -j + (abe2e2 abe2 e2 +a 2 2 b1 2 e 2 e 2 ) (a 2 1 b2 1 e 1 - a 2 2 b 2 2eg 2e 32 o
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The circuit is balanced for operation aS followss We fir-,,t aet

a01 -a 02 by adjusting the d-c grid voltages (Balanae No, I in

Fig, 3.3. With matched 120-ohm resistors in the cathode circuit
'the cathode currents In the two tubes will be equal whon the cith-

odes are at the same voltage,) Then an adjustment of th* d-o

sunpressor voltages (Balance No. 2) will make the sum of the
terms in the first parentheses zero,. (The 6, 000-ohm plat re-

sistors are also matched,) The terms In the second pair of

parentheses all. have zero average value provided that the lignal

Inputs have zero average value, and therefore they contriblute
nothing to the d.-c output. t.e third paIr of narentheses en!cto,
ltte wanted output terms. The fourth and fifth parentheses enc'lote

-error terms proportional to the squares of the input signals, and
t'aese can be made zero by adjusting the relative amplitudes of

e, I and e 2 , and e., and e.2 - In the circuit of ig,3,3, this is
a cvP.l.ished by first applying an a-c signal input to the grids
crly and adjusting the balance No. 3, control for zero d-c output,

tthen by applying an a-c. signal to the suppressors only, and adjust-
ing the balance No., 4 control for zero d-c output. The sixth 'alr

cf pa rentheses enclose terms proportional to * e2 which cannot

be b-slanced out, but which for sinusoidal or symmetrically dis-
ruted noise signals have zero average value and contribute

not.ing to the d-c output. It is possible that a signal having

zero average value but unequal moments either side of the axis

could contribute a large error at this point-, in using this cir-

cuit with such unsyumetrical waveforms care should be taken to
determine whether such errors are negligible or not. The remain-

ing terms in the last narentheses are nmall and nearly balanced

out,

Measurements of the characteristics of 6AS6's indicate that

the following are good operating conditions for multiplier use3

Escreen = Eplate 120 v

Egria -2-. 5 v

E supres sor
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T C2. '7-3 v -

e ~ ~ ~ ~ ~ 1na fo~~ fDl L~v~tr a P0,41 $rid *Win$ Or
v and~ a peak $uv ressr swing oft 2 v, TYW ",rrmano* of th#
I u tlljler as a suarer iw~ hec'ked by ajpptying thO SAMO 3dr0u-

sqoida yoitage to both int~uts and plotting the sqar rooto
the. d4, out-put vtagaainst vio a-e input voltaic T ho
resulting cuzrve was quite llne ,r for titit volttagos up to the

limits lie qbove

As originally tried, the civ, ut ot Fig. 3,3 suftefOO4
frm instattility of the d- e balarice and this instAbility was
rrraced, In Part to extreme sensitivity to fluctuations of the
- ,zater Volage. An electronically regulated a--c supply aind
z*= 3election ofl tubes have Improved the circuit greatly in
th-l's resneet However, because of the large number of balance

ajustswnts, this tirclult is somewhat unwlieldy to use, and the
4 -fluctuiations in, th~e output set a definite limit to this

:-rrelatsr's ability to detect small signals,

The as,-umptiors of the preceding analysis are a little too
Ssince i. depends to a small extenit on 6Sand a depends

to a greater extent on e Feedback systemns for linearizing
tn e i~ k e characteristic (and making it independent of es)
will come to mind, It must be remembered, however, that it is

impossible to feed back around the entire multiplier.. It is
possible that a~ can be made more nearly Independent of e 9 by

leeding some of the e 9signal in on the suppressor grid.

"';uajter-Difference-SauArgs" Multi1.o1.

Another method of multiplying two signals is the quarter-

difference-squares method, which is simply based on the fact
that the product AB = /4(A+B) 2 _ 1/4 (A,_B) 2 , The operation of
multiplication is thus reduced to that of forming the sum and

the difference of 'the multiplicands, and squaring., A block

diagram of a correlator based on, this principle is shown In



TM27 36

Fig. 3.4.

Because of curvature of the plate current-grid voltage

characteristic, many vacuum tubes operate very satisfactorily

as squarers, For example, a twin-triode squarer can be built

as shown in Fig, 3.. We again assume that the plate currents

in the individual tubes can be expressed in power series in

the signal voltage at the grid. The current in the first tube

may be writtenw

1 4 aa e + a a e3 + 4 a

and that in the second,

i a02' '12eg2 a22e 22 +aP ,_ 92  42e 2

ae 2  1, 4
2 '' + a a- eI + a 4 2 eg 1a02" Az ,1 22 P! -12 9 1...r"'

ere tand C Are the signal voltages at the two grids. The

Oiitnut voltafe I proportional to the sun of these two currents,
1 2 (& 02) + (all.g, " alegI ) *(*2102+ a 22e 2 )

(a e3  a ) (a 4 4
31  " 1a3 2e') (a4 1e.1 + a4 2el) 4...

Te termg in thf: 1r:,t parentheses re present sinply the d-c plate

current, while those in the second can be made zoero by balancing

the amplitudes of the signals applied to the grids. The terms

in the third nair of parentheses reorf.ezent the desired squared

output. The terms in the fourth pair are small and nearly bal-.
anced o'.1t, and those in the fifth and higher are small until the

grid 3gnals become very arge (,r until tho circuit booomei
overloaded, 3o to speak), If, however, we apply the eame ortu-
went given in the section above, we ee tht It iS not ne' . ry

to have perfect (intantaneous) :;'.a'ireri, Amt s"Imly a alroux t

whose average output is rroportional to the uqwairi or tho 0111111.

A cingle tube i thus adequate to porfurm tho Aqunrtnr oper . t, n,
if the aver:rge out'put of the multiplior I , , t.it Lin ri',, rL,.

A. c !rrcuit arrn~m~ t f 0 ' a ';I n 1 e)- fl Ofd vI I nrfl' I N IIOWI t0Wl
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Fig. 3°6° It is necessary to use fixed bias with such a squarer,

since with a cathode bias resistor, the degeneration linearizes

the operation of the tube to such an extent that it loses much

of its square-law sensitivity. A graph of the change in the

average plate voltage as a function of the rms amplitude of

random sinusoidal grid voltages for this circuit is given in

Fig, 3.7. Pentodes may also be used in the same way, if well-

stabilized voltages are applied to all the fixed-voltage

electrodes. A schematic diagram of a pentode squarer using a

6SJ7 is shown in Fig. 308, and a graph of its average output

voltage as a function of the rms input voltage is shown in

Fig. 3.9.

A circuit diagram of a quarter-difference-squares multi-

plier using the two halves of a 6SN7 twin triode as the squarers

is shown in Fig. 3.10. Self-bias is used, but the resistive bias

network is by-passed by a large capacitor, so that cathode-circuit

degeneration cannot linearize the tube characteristics. A d-c

balance potentiometer in the cathode circuit allows one to set

the no-signal output at zero. Two ganged potentiometers in

the grid circuits allow adjustment of the signal amplitudes at

the grids to compensate for possible inequality in the square-

law sensitivities of the two halves of the tube. This control

is adjusted so that the output remains zero when a signal is

applied to only one of the inputs. The inputs should not ex-

ceed 3 v rms. An RC averaging network is shown at the outputl

in adjusting this network to a particular time-constant, account

must be taken of the non-zero source impedance at the plate cir-

cuits of the squarers. We have found it easiest to measure this

(resistive) impedance using a simple resistance voltage-divider.

Circuits of this type, but using fixed bias derived from a

battery, exhibit a considerably greater zero-drift stability

than the 6AS6 multipliers discussed in the previous section,

and the circuit described above, which uses a common cathode

bias circuit, is even a little more stable in this respect.
Because of charging of the capacitor in the cathode circuit,
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the operating points of the squarer tubes change slightly
with the amplitude of the input signals. This change was

found to be very small, however, and apparently has negli-
gible effect on the operation of the correlatoro

A solution to the problem of the drift in the output
was sought in the use of synchronous switches or choppers
which were used to interchange the two squaring tubes period-
ically, The choppers serve to convert any d-c unbalance which
may arise in the squarers to an a-c voltage whose average value
is zero,, A block diagram illustrating the application of chop-
oers to the correlator of Fig. 3.10 is shown in Fig. 3.11. The
choppers used were double-pole double-throw, break-before-make
Type 258 AC-DC Choppers.* They are powered by the 6.3-v,
60-cps heater supply. The two switches in these choppers are
well synchronized, and are open for about 1 millisecond of

their 8 1/3-millisecond period. The alternate periods of
contact in the chopper are factory-adjusted to be equal within
5 per cent, but can be balanced more accurately by adjusting
the amplitude of the driving voltage. Measurements of the
output signal-to-noise ratio were made by the method to be
described below for a correlator of this type. They indicate

that for random inputs the output signal-to-noise ratio is not
more than 1 db less for a correlator with choppers than for
one without choppers. In addition, the output drift is very
substantially reduced. Unfortunately, if there is in the in-

put a sinusoidal wave of a frequency which is a near multiple

of 60 cps, there appear "beats" of fairly large amplitude in
the output, presumably due to the imperfect action of the syn-
chronous switches (the fact that they are open for about 1/8

of their period). If a switch could be built which would in-

staneously change from one position to the other this beat

phenomenon would disappear, and there would be no difference

between a correlator equipped with such perfect choppers and

•Manufactured by Stevens-Arnold, Inc., South Boston, Massachusetts.
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one without, except that the drift noise would be removed. It

appears that the amplitude of the chopper driving voltage must

be well regulated in order to prevent zero drift due to changes

in the lengths of alternate periods of contact.

If one can tolerate imperfect choppers, that is, if one
is performing cross-correlations of purely random functions,

one can use a "single-channel" correlator in which only one square-
law device is used, being alternately switched back and

forth from the sum channel to the difference channel. A

schematic diagram of such a correlator is shown in Fig. 3.12,

where a 6SJ7 pentode squarer is used. A little greater sta-

bility of the output is expected here, since only one chopper

is used instead of two, and it is only necessary to maintain

the symmetry of operation of one chopper. An output d-c bal-
ance control is provided in this circuit, although it would

not be necessary with perfectly matched components in the

plate circuits, and a perfectly symmetrical chopper. Be-

cause of the much greater square-law sensitivity of the

6SJ7, this correlator has a much greater output voltage for

a given input amplitude than the correlator of Fig. 3.10.

Reasonably accurate square-law rectifiers can be con-

structed of contact rectifiers such as the 1N34 germanium

diode. One method is to use a large number of rectifiers,
each biased at a different voltage, so that each starts con-

ducting at a different input amplitude. By means of suitable

resistive combining networks any monotonic characteristic can

be approximated. Because of possible variations in the

characteristics of the individual rectifiers, it is necessary
to use fairly large bias voltages so that the rectifiers are

essentially nothing more than switches. This, in turn, re-

quires that the input voltage be of a fairly large amplitude,
which may require special amplifiers. However, good accuracy

is claimed for this method, eleven diodes being required to

match a square-law curve for inputs from 0 to 100 v with

1 per cent accuracy.5 Another method is simply to make use

Af
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a correlator are of interest not only in checking the theory,

but also in evaluating the performance of the multiplier.

Noise in the output can be divided into two categories:

the fluctuation noise which always appears when random volt-

ages are applied to the inputs, and other steady or fluctuat-
ing voltages which are present because of improper operation

of the multiplier. The latter may consist of

(1) d-c balance instability or drift,

(2) d-c voltages which may appear because of

improper operation of the multiplier (de-

parture from square-law characteristics,

imperfect sum-and-difference network, etc.),

(3) self-noise (thermal or shot noise),

and (4) periodic noise due to choppers.

The signals were measured and noises of the first two kinds

were evaluated by recording the output of the correlator on a

level recordero 7 The fluctuation noise and chopper noise were

measured with the low-frequency square-law voltmeter described

below. Self-noise was proved negligible for the simple corre-

lators tested,

It is reasonable to assume that drift noise in the output

of a correlator exists in a frequency band much smaller than
the band-pass of the RC averager. Neglecting this very-low-

frequency drift noise, it can be shown that the spectrum of the

input to the averager may be assumed uniform with little error

if the bandwidth of the correlator input signals is wide com-

pared to the band-pass of the averager. We therefore evaluate

the output noise by measuring that above 1 cps in frequency and

extrapolating to estimate the total noise output. Since drift

noise occurs at frequencies much lower than 1 cps, it does not

disturb this measurement°

The circuit of the noise meter constructed for this

purpose is shown in Fig. 3.17. Because the output of most of

the correlators we have built is not push-pull, the first two
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stages effectively take the difference of the voltages at the

two input terminals and convert this difference into a true

push-pull signal which is applied to the grids of a 12AU7
squarer of the form of that shown in Fig, 3.5. The meter thus

re'ads the true mean square of the input, All the correlators
wkieh -were tested were equipped with RC averagers each of

which. aonsiited o' a 100 000-ohm resistor and a 1-microfarad
capacitor, It can be shown that. the input circuits of this

reter do not load these averaging networks enough to make a

,ignlti ,ant change in the effective tim constant of the
ver~g~-er Because of the extreme senitivity of z; voltmeter
rcult, of thia type to supply voltage changes (both plate

;ond heater>, the unit is operated from an a-c line voltage

regulator. Long warm-up and freauent zero chck. are ,neces-
Sary for accurate operation. The zreter 4" ;alibrated by
measurement of a 30-5% cps sinusoid of known a~m-itude. A

"ondenser across the jrid circuits of the third pair of tubes

i~its 'the response of the meter st high frequercles (3 db

:, tt 160 crs) to reduce the effects of self-noise in the
'-, The tire constant of the riet- r averager is adjustal le

from 0.1 second to 100 secncrd so tn:,t it, can b, iradv appropri-

,tk, for the partic4Iar :.eaurtent being -'afde-

Thi- --eter -.. np s bovf.uv, 1 c. in tbe output

I trae correlator. The extrapoiPtion to ths, total nosoiso out-

rt (not including drift noise,, of cowrso) can be carried out
in, terms of the equivalent rectangular paas-bands of the aver-

-,er and the noise meter. The IntensIty-frequency cl:,acteris-

tlc of the RC averayer Is 2
co

0

where o l/RC. The width of a rectangular band (with unity

r1!3ponse) which would pass the same power is then

a)

2+ 2 2 cycle5.

0
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t independently on the frequency rto4,!O IrA rtort4ty
frequency char tc o.isu Is then

where u l/AlCl' the cut--oft frequency of one of the, three
cunlinf networks3, so the cut- off frequency of the equivalent

rtctanggulhr hIgh-pass filter is

2

The reading of the square-law meter must then be multiplied by

2 1

__31 1.87
2 16 W

to obtain the mean-square value of the output noise.

Output signal-to-noise ratios have been measured for the

ccrrelators of Figs, 3.10, 3,11, and 3.12, Input background

ncIses and a random (noise) signal were derived from gas-tube

n oise generators and combined in resistive adding networks.

Tlhe input signal-to-noise ratios were measured with a Ballantine

Model 300 Electronic Voltmeter.* The input signals were passed

through an amplifier which had a single-tuned-circuit filter with

a center frequency of 3800 cps and adjustable Q. The correlator

time constants were always adjusted to be 0oi second as accurately

as possible. The theoretical output signal-to-noise ratios were

computed from the formulas in Table 2.1 from the above data and

*It has been found that when the Ballantine voltmeter is used
to measure the normal random noise used in these experiments,
1 db must be added to the meter reading to obtain the true rms
value. This correction is constant over the entire scale.
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the measured input signal-to-noise ratio, The correction fac-

tor for the low-frequency square-law voltmeter for the above

averager time constant is 0o4 dbo The results of these meas-

urements are compared with the theoretically predicted values

in Table 3.1o

Because of the inherent difficulties of noise measurements

occasioned by the requirements of long averaging time, and be-

cause of zero drift in the low-frequency voltmeter, the

accuracy of these measurements is probably not better than

Io db. With this in mind, the data in Table 3.1 show good

agreement between theory and experiments The last entry in

the table (for the correlator of Fig. 3.12) which indicates a

very Door output signal-to-noise ratio, is included simply as

a reminder that with that circuit there is a comparatively

large 6 0-cps component in the output because of the chopper.

The fundamental and several harmonics of this frequency are

within thepass-band of the low-frequency voltmeter, so that,

even with no input signals, the voltmeter indicates a large

output"noise." Comparison of fluctuation amplitudes on graphs

made by the recorder, whose pen-drive system cannot respond to

the 60-cps voltage, indicates that there is, as one would

expect, no difference in the output signal-to-noise ratio

for this correlator and an "honest" one, if the chopper

"noise" is neglected.
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Laboratory, Harvard University, Cambridge, Massachusetts
(August 15, 1949). The recorder has since been provided
with a d ?c input circuit, giving recording sensitivities
from .352 v/in. to .0262 v/ino The imput impedance of
the d-c amplifier is of the order of magnitude of one
megohm, and causes negligible loading of the DC averagers,
at the outputs of the correlators, While recording, the
1-microfarad capacitors in the averaging networks were
shunted by O1-microfarad capacitors to reduce the noise
output and thus give greater accuracy on the recorder
traces. These condensers were removed for measurements
with the low-frequency voltmeter.



TM27-

iv

SIGNAL-TO-NOME RATIO AT THa OUTPT Or A DYTEOTOS

A detector is issumed to consist of' a re,01tifir and an

averaging network or filter, It is of interest to compute out-

put signalto-noise ratio$ from the detector both for comptri-on

,with those for correlators, and for estimating output sigrLto-

noise ratio$ for circuits which are similar in operation to cor-

relators but sonewhat. eatsier to construct. Tneie correlator-

typ* circuits will be discussed in Chapter V.

Conslderble attention has been given in tht literature to

tne problem of the signal-to-noise ratio after a detector. 1 The

vroblem solved here is one which can be handled by fairly straA4..-_t-

oerwar4 mathematical techniques. We limit our oonsideration to

t1ne case of a noise signal in a noise background, where the sig-

n l and tho noise have the same spectral distrIbution, to the

4ase of the ful .-wave detector,# and to the case of relatively

long averaging time and very small input signal-to-noise ratios.

T, roblex of detection reduces tno the quest~ion of whether the

.nrcreent in the average output of the detentor due to the sig-

rvU can be seen. in the presence of the oitinat noise As long

:is the innut tirn).-to--noise rAtlo Is very 7mall, these results

shou 61 be useful for any ty.e oi fnout signli because the proba-

bll-ty denfity for the sum of a Faussian noise anu any small

;i[na.l .s -,pro>yizmtely the same as m ti foic a gusslan noise
iaving a nean-square amplitude equal to the sum of the mean-

,:quare arpiitudes of the noise and the signal.

Detector Outrut Signal-to-Noise Ratio

Let us suppose that the instantaneous voltage output of

rectifier circuit is fv(t)l, where v(t) is the instantaneous

input voltage, We assume that v(t) is gausslanly distributed

A more mathematically elegant solution of this problem by

Middleton and Stone is included, herewith as Appendix III,

-46-
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and has the mean-square N.. For a full-wave power law detec-

tor

f(v) - .. I

Then the average output of the detector is

ItvtV e- V2 2  d

"V -v2.V dv

-I / 2  .... :: v even;F- 2~+ (4.2)
(N !2

S (2) 4, v odd.

If the output is averaged by a network whose weighting runa-

-fion is g(t), the output of the areraging network is (Eq, (2.1))

F(i

F~t) .I gk(,V ) f~v(t-t,') dt, ,

and its mean square Is
2 ( r ) I ( -;)]T .1 ) ( (t ) [' t-t')Idt'

Let v(t-t') = x and v(t t") - y, Then

F 2(t) = bg(t') g(t") x) f(y) dt! dt o

We evaluate this by means of the Joint probability density for
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the gaussianly distributed variables x and 2

x2 + '2 - 2xy ( ,)

= 1N1 e tl-( , (4.3)

where P(4) is the normalized autocorrelation function of x (or
y). P(xy,) dxdy is the probability that the voltage lies be-
tween x and (x + dx) at some time t and between y and (y + dy)
at the time t + . Thus

og(t') g(t") f(x) f() P(x, ,t--t')dxdydt'dt" .

We make the change of variables (cl Chap. II),
t" - t I m and t" + t I

perform the integration with respect to I, and find that

: It) fj7w~ (x) f(Y)Py,) dxdyd, (4. 4)77 
-00 -00

where w(;) is tho transformed weighting function of tho avera~ing

network. To evaluate the, integral in Eq. (4.4), we note that

Eq. (4.1) can be written

22 P 7 -

and that, by Eq, (4.1),

f(x) r(y) y i y l ,

which can be written

yv (x+rY)2_ (x-Y)2

Then

F 7(t 77_~ jx~ (x-T) e
-0O - -00
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e 4N[l+p()]. _ix dy d

We now let 2 NVp( )

u and - V

/4i7 -pc)) I ,4NL14p(')] ( 4

whence

x d( - du dv,

ard

P2 f J NV w() u2cl-p( )) - V2-V+p(;)

• du dv dl. (4.5)

We now let

S +2u = r cos 0, v = r sin 0,

and Eq. (4.5) becomes

2(t N J ] Jw(;) cos 20 - v()j r2v+] -r 2 dr dQ dg.

We perform the r-integration and set 20 =

Then

F2 (t) = NVv. j w(;) 2f Icos 6 - p(5) di dg (4.6)

We have found it difficult to evaluate the integral

i u~J~Cos -p(5) dO (407)
2. v

0

for arbitrary values of v, although it must represent a continuous
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function of v for 0 < v < x. It is possible, however, to

evaluate it for a few specific values of vt

'When v I 1,
cos'O-~f/ 1 ( cosi p(j)] do( +~ f p( ~ - c

cos- P(;)

We substitute the following series expansionst

PM~ sirf1 P(T )

2g 1 2k )2k- L

Then, for v 10

z 2 t;2 i ivfr,! 2X+2( M

and Zq,. (4.6) is

" k. o -2 (2k+l)(2k+2)

(4A8)
If v in 1q. (4.7) is an even integer,

Loos d - p( °)- d$

21 ___

o mT
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This integral amounts simply to averaging over a period of 1.

We can write .....
, oos~~0 0 v-m 2e -

and, after expanding by the binomial theorem, we see that the

only term with nonvanishing average is the term independent of

6. That is,

Cos V-m 0 (v-m) (n-m) even,
2 - 2),

(4-9)

- 0, (v-m) odd.

Then, substituting 2J, for m, in order to retain only the terms

for even values of m (and even values of (v-m)),we have

I" (2t)1 2V' - . ,'2.. 2"(

2 2)2

and, for v even, Eq. (4.6) is

F2 (t) = 2 v()-2 22t - 2 w(5) 2t(5)d5.

(4.10)

If there is added to the input "background noise" a small

noise signal of mean-square amplitude S, there will be an incre-

mental increase in the average output. From Eqs. (4.2), this

increment (which we call the output signal) is, for v - 1,

-TY1+1 - N'fi

S <<N-
and for v = 2$ 4, 6, 89 1

N+ s.L, r(,'
EN +)v/2- N'12l N V2 ' V S <N.
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The output noise can be measured as the difference between the

mean square of the output and the square of the average output.

Then the mean-square output signal-to-noise ratio is, for v = 1,

and (S/N)i< < 1, (from Eq. (4.8)),

(SIN in.-

out ' (4,11)

(20l)......, ... )p2k+2(;) d;
k-o 2 " °") (2'1) (2kc+2) .o

and for v 2, 4, 6, 8, 11 (from Eq. (4.10)),

V24(SIN)

(S/N)out V . 2. 4 (8... • (4.12)
(v/2) ,2  2.: 2t(5)d5

1 2 (

Evaluation for Bxecific Examples

The output signal-to-noise ratio depends upon the correlation

function p( ) of the input noise (or its spectrum) and upon the

transformed weighting function of the averaging filter (or its

frequency response). The integrals to be evaluated are in each

case of the same form,

3j w(5) p2() 4 (4.13)

This integral can be readily evaluated for at least two forms

of input spectra, for an RC averaging network9 subject to the

assumptions that the averaging time is very long, and that the

input bandwidth is at least moderately narrow. We use the

transformed weighting function for an RC averager, from Eq.

(2.9), -

w(5)e

a n Circuit e g The normalized autocorrelation

function of "white" noise after passage through a moderately
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high-Q single-tuned circuit filter, of center frequency wo/2n

and half-bandwidth u/2rr is (see Apperdix II)

P(-r) = e cos WoOZ

Then, for this case, Eq. (4.13) is

CaJ , e-I cos o e d

" f e 2 OFJgcos2"co1,, d.

If we assume that uo >>w., we can replace the cosine

term with its average value which we found in Eqso (4.9):

+

"RC .2 2 't )($ 22o - Cd ; ,,21 + 2 ARC]I

If we assume now that RC >> , which. simply corresponds to

thorough filtering, we have

22t(., ) 2 2tARC

Substituting this value in Eqs. (4,11) and (4,12) gives the

mean-square output signal-to-noise ratio for the tuned-circuit

input spectrum; for v - i

,,Fg (s/N)2
(SIN) out -a) r 2 n

a ndC (S/N)2 02965'8 ..
;

in 95 (SIN)i« 1

and for v 2, 4 6, 8, 6*o
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(S/N) out (SIN) (S/N) << 1

x1

(SIN)
Values of -t-.._ computed from the above for various2oR~C(s/N)

in

values of v are tabulated in Table .,l.

Table 4

Tuned-Circuit SDectrum

Power Law of Relative Output Relative Output

Full-Wave Detector S/N Ratio S/N Ratio

1 ,965 -0.12 db
2 io00 0.00 o
4 .889 -0.48
6 .65o -1.84

8 .405 -3.90
10 .212 -6 58

)a. Ra The normalized autocorrelation function

of noise whose spectrum is constant between (o0 -bw) and (wo +L )
and zero elsewhere is

P(O Cos Co. a[i ]°p(r) CO

Then J (Eq. (4.13)) is

JT e- 151/R olI c 0o s 2 wo-5. 1 3 d
2RC I cta

We again replace the cosine term by its average value as before,
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and assume that RC >>-I so that throughout the range where

the integrand is ap-preciably different from zero,

6-11 /RC ,

Then L ]'R 2 y iJ-'- )2 ' " d5

The integral

which can be evaluated by contour integration, has the values

given below

1 T
2 2 6667

3 ,550oo
4 •.4794 I
5 4304f

By substituting the values of J , (2 - i q

gie 2.bR 2l,2Ko i Es

(4oll) and (4.12), we find, for v 1 ,

1 T 2 K(S/550 r r 2...)._

- 2RC (W) ' (S/N)n o952

and, for v = 2, 4 6 8, ..
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(S/N)out = 2AwRC (S/N) n  /2)2/(V/2-- j)2

Values of ........ computed from the above for various

values of v are tabulated in Table 4°2.

Table j_

Rectanigular Spectrum

Power Law of Relative Output Relative Output
Full-Wave Detector S/N Ratio S/N Ratio

1 0.952 -0o18 db

2 1o000 0.00

4 o858 -O.64
6 °580 -2.33
8 °325 -4.85

10 , -8o02

Curves of relative output signal-to-noise ratio are plotted

in Fig. 4ol for these two input spectra. For both input spectra

there is a slightly better output signal-to-noise ratio for the

square-law detector, although the linear detector is not appreci-

ably worse. The slight suneriority of the square-law detector

is also predicted by Mayer3 although his results for the half-

wave detector are apparently in error, He predicts that the

half-wave detector should be considerably inferior to the full-

wave detector we, and others , feel that, for Tong averaging

times, there should be no difference. Burgess 4 finds that the

square-law detector has a similar slight superiority with
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respect to output signal-to=noise ratio in the detection of a
sinusoid in noise9 although his work is based on different

assumptions concerning the averaging time.
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V.

OTHER CORRELATOR-TYPE CIRCUITS

Two other circuits which behave in much the same way as a

nultiplier-averager have been analyzed, Although these cir-

cults do not produce quite as high Output signal-to-noise ratios

as a multiplier-averager, they do have characteristics which

may be advantageous in certain uses, and one of them is *onsid-

erably easier to construct and operate. The first to be dis-

iussed is the polarity coincidence correlator, which measures

tbo degree of correlation of two signals by determining the

frAction of ttme that the instantaneous polarities of the two

sipnal are the same; the other,, the liear rectifier oorre-

is. the same is tho multiplier-averager shown in Fig.

4 Wth, e 3quare- aw ectifers replaced with, linear

r; w<if lrs, The first of these is thuus seen to be at least

4xilar in opieration 'to a oonventional phase meter, and the

.,icond is .imp'y a form of the coherent detector.

1he Polarlty Coincidence gorrelator

Vhe polarity coincidence correlator is an electronic

Jrcutt with two inputs, whose output, before averaeing, is

-+1 !;vher Vie instantaneous tles of th. two inputs are

lh-'! Same, and -1. v when the i-puts have otpoilte polarities.
Thl, operation can b~e realized 'by ,evere.y clipplng both In-
plts and applying the reso.tant rectagul.Ar vv]tago waves to

any of a variety of coincidence circuits if the two inputs

are incoherent rsndom noiseV, the average outvut will be z(ro,
since the two inputs will be of, the opposite polarity an often
as they are of the same polarity. If the Inputs are dentical
the output will be +1 regardless of the invut signal amplitudes.
The average output depends on the deree of cobfrfreIrp of' the two

inout signals tather than on their arplitvl id In'-'r All ampli
tude information is removed In the rpi,,rig.,

The average, output of the, polarlty rolnrllfrieo cOrrelaor

P3 ..
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is simply the probability that the instantaneous signs of

the two inputs are the same less the probability that the

instantaneous signs are different. We can compute this

probability only if we know the joint probability density

for the two input functionso We assume here that both

inputs are gaussian random functions, aAd our results here

are only valid for that case. The probability that the

signs of both inputs are positive is

p 7 f P 2 x 17 10dxdy

where x(t) is one input function,

y(t-t) is the other input function,

and P2 (x,y,t) is the joint probability density for the
gaussian random functions x and y (Eq0 (4-3)). In terms

of p(C), the normalized correlation function of x(t) and
y( t),

x2 + y2

2TN V e dxdy,
0

where N is the mean square of x(t) and y(t)o Paralleling the

procedure of Chapter IV, following Eq. (4.4), we write the

above as
_ (XY)2  - , (x+v)2

pe •T4 e 7 4 dxdy

and make the change of variables

X + Y - U and Y Vo

.'4N C.+p (V)) I /V4N lop (%) 3
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T=R7 e - (u 2 + v 2  dvdu ,

We then substitute

r 2  u2 + V2 . u r cos 0; v r sin 0,

p tan-1  r dr d

11ffef
0 0

• " n 1lp(t) 4 sn'()

The probability that the signs of both inputs will be negative

will also be p, so the probability that the instantaneous signs

of both inputs are the same is

2p = ; + 4 sin-1 p()2

The probability that the signs of the two input functions are

different must then be

1 - 2p - sinp(i)2 rr

The average output of the polarity coincidence correlator is

the difference of these two probabilities or

F -) - 2- sin-lP(Z )o go

The average output thus depends only on the normalized cross-

correlation of the two input functions. Equation (5.1) is

plotted in Fig.I,,l for the range p() >O F(t) is clearly

an odd function of p(V)o

If one input function is [ni(t) + s(t)] and the other is
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[n 2 (t) + s(t)], whare nI(t)I n2 (t) and s(t) are incoherent

random functions, and if the mean square of n!(t) and n 2 (t) is

N, and the mean square of s(t) is S, the normalized cross-

correlation of the inputs is

(S/N) in

1 + (SI N
in

where (S/N)in is the mean-square signal-to-noise ratio at

either input. In this case, the average output is

(SIN) in.

ii i(SIN) in (S/N)in < < 1,, (5.2)

If one input signal is [n 1 (t) and s(t)], as defined above,

and the other is simply s(t), the normalized cross-correlation

of the input functions is

(SIN) in

and the average output is

!T + (S/N)in

T (S/N) in (S/N)in << 1 (5o3)

The determination of the mean-square output noise (after

averaging) has not been attempted for the general case. How-

ever, for small input signal-to-noise ratios, it is logical

to assume that the output noise is practically the same as that

when the signal is completely absent, which can be evaluated

when the inputs are incoherent gaussian noises. This is

probably the greatest output noise, since, for an infinite

input signal-to-noise ratio, the output noise vanishes. We can

consider the polarity coincidence correlator as a multiplier-
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averager in which the inputs are severely clipped to an ampli-

tude of +1 before multiplication. Van Vieck has shown that

the autocorrelation function of such strongly clipped gaus-

sian noise is

R(e) - ;2 sin-!p(Z,)

where p(V) is the normalized (p(O) = 1) autocorrelation func-

tion of the noise before clipping. I When both inputs to the

polarity coincidence correlator are uncorrelated but have the

same autocorrelation function, p(O), the mean-square output

of the averaging filter will be

F2 (t) M 2 w( PR 2() d5

where w() is the transformed weighting function of the filter.

If we assume that the noises have the same spectrum as a narrow-,

band tuned-circuit filter,

p(r) = e cOS oV5

where wF/2 is the half'-bandwidth and wo/2r is the center

frequency. The mean-square noise output is then

F2 (t) 2 fw\ --4-- rsinl(eF coswj)]) d5-.

0

Now, for an RC filter, w() - e and we assume2RC
that W >> I so, where the rest of the integrand is appreciablyF RC I
different from zero, w() ;e w(O) i We have then

F 2 (t) [sin-- (e Wn - co._wo ) ]2 d2

n 2RC J
0

Now s = x + x 3 /6 + 3X5/40 + 5x7/112 +

so
[sin Ix]2- X2 + A + 6 + 8 + o
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Then

F 2 ( 4 ) [coRCo -:5 4

0

-6-A e F' c 6 w0  + e csj jd

Since we also assume < o we can replace the cos wo by
their average values

cosn . n even,

20.

0 0, n odd,

Using

e ' F

.we find that the mean-square noise is approximately

F2 (t) -, I. + I-. + -1O + 12- + .o . j z:- a (54

r2RUF L4 32RC wF

For small input signal-to-noise ratios, then, the output mean-
square signal-to-noise ratio is (from Eqo (5.2))

(SIN) u4RC WF(S/N)2 (55)o -- 1h4 in'

By reference to Table 2.l, we find that for a multiplier-averager
with inputs [s(t) + n1 (t)] and Is(t) + n2 (t)] having the same
statistical properties as in the above example, the mean-
square output signal-to-noise ratio for small input signals is

4 ,(S/N) 2
in °

The polarity coincidence correlator then has a disadvantage for

the above spectrum of a factor i1-64 in small-signal-mean-square
output signal-to-noise ratio 9or 0o7 db,, The 0,7 db might be



I,

TM27 -64-

considered the penalty one pays for not making use of the informa-

tion contained in the clipped portions of the input voltage wave-

forms.

If one input is pure signal, and if the signal-to-noise

ratio at the other input is very small, we can assume that the

output noise is the same as above (Eq. (5.4)). The mean-square

output signal-to-noise ratio for this arrangement is then (from

Eq. (5.3))

(SIN) out = 4RC(oF(S/N)in' 5,6)

From Table 2.l it can be seen that the small-signal output signal-

tornoise ratio of a multiplier-averager used in exactly the same

,.way is

4RC F(SiN)

so the polarity coincidence correlator again has a disadvantage

of 0o7 db, for this particular input spectrum and averagero

The polarity coincidence correlator is almost, but not

quite, a normalized correlator; that is, a correlator which

determines the quantity

x tJY t (T

which is a normalized correlation function,, The average output

of such a correlator would be a straight diagonal line on the

graph of Fig. 5oL, The polarity coincidence correlator does

measure the cross-correlation of the clipped input signals.

This means that the autocorrelation function of a sine wave, as

measured by the polarity coincidence correlator, will be saw-

toothed rather than cosinusoidal, and all correlation functions

measured by it (except those of already strongly clipped waves)

will be more or less distorted. As an example, the normalized

correlation function of gaussian noise which has been passed

through a single tuned-circuit filter is plotted at the top

in Fig. 5.2 and the autocorrelation function of the same noise,
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as it would be measured by the polarity coincidence correlator

is shown at the bottom. If sufficiently large incoherent

noises were added to each input so that the input normalized

cross-correlation did not ever exceed 0°7, the measured cor-

relation function would be little distorted.,

It is possible that a polarity coincidence correlator

could be built more easily than a multiplier-averager; if so,

its performance with respect to output signal-to-noise ratio

is not enough worse than that of a true correlator to rule it

out of consideration. It has the advantage in a practical

application that the input signals would not require automatic

gain control, as is the case with a multiplier-averager, which

may be easily overloaded. The greatest difficulty in its con-

struction will probably be found in the clipping circuits,

where absolute symmetry of cliDping must be maintained.

A polarity coincidence correlator consisting of two

clipper-amplifier circuits (Fig. 5.3) and a coincidence-averager

circuit (Fig, 5.4) has been constructed, Note in Fig. 5.3 that

a potentiometer is provided at the output of the clipper cir-

cuits to allow adjustment of the output amplitude. This was

necessitated by the fact that the contact potentials of the

various type-6AL5 twin diodes varied greatly, and it was not

found possible, even by selecting tubes, to make the output

amplitudes from different clipper circuits match exactly with-

out such an adjustmento Measurements made by the methods

described in Chapter III indicate that this correlator's out-

put signal-to-noise ratio for small input signals is inferior

to that of the multiplier-averager by 2 db, when the same in-

put spectra (tuned-circuit, Q = 4) and averaging networks

(BC - 001 see) are used0  Because of a possible error of 41.5 db

in the measurement, we can only conclude from it that the theoret-

ical predictions are roughly confirmed0

Linear Rectifier CorrelatoL

It will be seen that the linear rectifier correlator is of
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the same form as a phase-sensitive detector or coherent detector,

of 'which thorough analyses have been already made.2 We here de-

termine only the average output of the linear rectifier correlator

in terms of the properties of the input functions and estimate

the small-signal output signal-to-noise ratio.

Figure 5.o5 is a block diagram of a linear rectifier corre-

lator. By comparison with Fig. 3.4 it may be seen that the
linear rectifier correlator is simply a multiplier-averager of

the quarter-difference-squares type, with the square-law recti-

fiers replaced by linear rectifiers.

We assume that the inputs to a linear rectifier correlator

are ts(t) 4 nl(t)) and Ls(,t-Z) + n2(t)], where s(t), nl(t), and

n2 (t) are independent, gaussianly distributed, random functions.

The sum of these input signals is s(t) + s(t-V) + nl(t) + n2 (t)

and the difference is s(t) - s(t-r) + nl(t) - n2 (t). Now the

average output of a full-wave linear rectifier, whose input, x,

is gaussianly distributed and has the mean squar9 e2 is (Eq.(4.2))

Cr. (1o7)

We cannot simply determine the mean-square amolitudes of the sum

and the difference of the input signals by adding the mean squares

of the four individual components, because s(t) and s(t-T are

not independent functions. We note that

1s(t) + s(t-')] 2 = s(t) + 2s(t)s(t-t) + s2(t-V)

2R(O) + 21t(-V)4

where R() is the autocorrelation function of s(t). The mean

square of the sum of the input signals is then

[s(t) + s(t-t) + nl(t) + n2 (t)]2 - 2(R(O) + R(t) + N)

and the mean-square of the difference is

[s(t) - s(t-V) + nl(t) - n2 (t)]
2

- 2[R(O) - R(V) + N)



oi 0

c7Jl

0 0

0

0

44
41

04

-- EJ $

00

100



I-r

In.

0I

0 X

0

020
-(r 0

----
(C0

_j0
L)



cr-

0

U. W,

4 to

.4

171

4- a-

1W m



TM27 .67-

where N = n2(t) = n2 (t), the mean square of the background noise,-

The average output of the linear rectifier correlator is the dif-

ference of the average outputs of the sum and the difference rec-

tifiers, and is (from Eq, (5o7)),

4~ ~ ~ V_~ 2(R(O)+R('t)+N [()'X~)N

0)+R V* +1 R(O 4)Ni
If we set R(O) S, the mean square of s(t), we can write the

average output as

pts2 [N+Sl+p< - NS[l,-p(z)] (5,8)

where p(V) is the normalized cross-correlation of the inputs. We

can expand the above by the binomial theorem, and we have

7(t L111L +( /)1p')

L2 N 2 N

I n ( (S/N) «1V TYN inin

Therefore, if there is a large enough incoherent noise back-

ground, the average output of the linear rectifier correlator

will be. directly proportional to the signal autocorrelation

function.,

If N = 0, corresponding to the use of the linear rectifier

correlator to measure a correlation function, the average output

will be (from Eq. (5o8)),

A graph of this function, normalized, is shown in Fig. 5.6.
Because of the great similarity between Figs, 5.6 and 5.l, it

may be seen that the distortion of an autocorrelation function

as measured by the linear rectifier correlator will be nearly

the same as that if it were measured by a polarity coincidence
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Appendix I

EVALUATION OF THIRD-ORDER CORRELATION FUNCTION

We w to evaluate the third order autocorrelation

func tion

in terms bf the ordimary autoa trrelation fun ction
a(c) - <Vl(t)V( t-T) >

?,or siplieiy of notation, we rite

iez!'3) " .v(t)V(t)v( t)v(t 4 ) > (Al 1)

whv~~~re', tl -r-r-

it

-
-

A o f ve ta In a ws u r wi te h ab v prou t of su ai

r~~~~~ 69, av Turil
+ (ain~h~ C05110 ~t.) 4,b5+ ~

'acst 3 + bks 'nct3 J fa k c 0 wkt4 +kjln~Ikt 4 -

where u - 2r"k/T, 'Writing in differen~t summation Integers in

each sum above allows us to -Tiiite the above product of sums as
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a sum of products

(: ' Jj a k Co tl + b ks in k te L3atco'wtt 2 * btsinott,2 3
n:- 1. n=1 n-1l

[amCos WMt 3  ir.s Wnt3 )3'[ancos 4nt4 + bns*intn 4 (A1.2)

This now corisists of many terms of 'the form

where we have interchanged the ope'rations of adding and averaging
and have made use of the ergodi. theorem,

.Zr gaussian n ise, the propertic, of the coefficients giver,
in (r .4 ,Lp?)A:ly here and we *ee that <a * 0 unless

the itrdicea ar*4 at lea, it equal in pair- Then the only nonvanish,-
Ing terms are those where at leant

(~~ aj x ?, And z n;

(ti) kc * n an,4

The terms for the cane k- t,-m on w.i be di'use d telow X k-
Ing the sub3tltttion-i indic.ted Abov'e s (a), (b), and (t), we
can write the nonvanihlng terms in th a qudrule sum as three

double aums

a i' cos t + b Sin W .tt' )[ cos w t, b sin wmml MM I M m 2 M r

[&.n cos n't 3 4 b n sin nt3 ] -[a n cos , nt4 + bn sin w t 4 )

+a m Cos Wmt + bm sin wmt]a cos ]-t 2 + bn sin n 2Mv M m m n C5(nt2 n o nY
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-Cam cos Wmt3 + bm gin W t 3][an cos 0 t4 + bn sin %nt4]
m:5 M nl n 4

+ 7 Z am cos mtl + bmsin %wmtl]°[an cos 3nt2 + bnsin wint2

M.-1 n=1

n[an cos &nt3 + bn sin ont ] a COs 'mt4 + bm sin mt4]> o

Using the further properties of the coefficients that < ambn> = 0n2> .<2> n
for all m, n and < an n  we can write the above as

m=1 n-1

+ <a> <a_ > Cos om(tiit3 Cos W(

h-1

2 a+ / <a> <a> cos cm(tl -t) cos n(t2-t

-n= 1

Now the terms in Eq, (Al.2) for the case k -- am = n have coef-

ficients of the form <a4> In Eq- (1..2) we proved that for
n>

the case of gaussian statistics,

<&4 31r4 3(< a2 >)2

n n

so these terms are included exactly in the above three double sums

as the cases where m = n. By comparison with Eq,. (1.9) we have

immediately

<v(tl)v(t2)v(t 3)v(t4)> - R(tl-t2)R(t 3-'t4)

+ R(tl=t3 )R(t2 -t4 ) (Alo3)

+ R(t 1 -t 4 )R(t 2-t 3 )
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+ R(C)R(V3- %l) (A13)

+ R( 3 )R( Z22.Zl)

This formula is proved by Fano ir a different way for a slightly
I Al

lss gener-1 case, -

The generalization of Eq. (Al3) to a third-order cross-

correlation function will be stated here without proofs

7A(tI)vB(t2)vC(t3)vD(t 4 )> - 3AB(tIrt 2 )RCD(t 3 t 4 )

+ RAC(tr-t 3 )RBD( t 2 -t 4 )

+ RAD(tl-t 4 )RBC(t2-t 3 )

or (Al4)

ABCD I)T'2 3) :: AB(ClCD)R D(C C-2)

+ RAC (.e 2)RBD(T'3-*l)

+ RAD(z 3 )RBC('r 2 - l).



Y4.

TM27

Appendix II

DEMIVATIONS OF AUTOCORRELATION FUNCTIONS OF NOISE HAVING

RECTANGULAR AND TUNeD-CIRCUIT SPECTRA

As indicated in Eq, (1o0), the autocorrelation function of

a random noise is the cosine Fourier transform of its intensity

spectrum. The integration is here carried out for two examples,

A o ec tan u ar S2 r_u

We assume that the intensity spectrum of a random function

has the constant value W between the frequencies fo -,f and

f0 + af, and vanishes everywhere else. The center frequency

is thus f and the half-bandwidth is af. The corresponding

autocorrelation function is

fo+Af

R(t) W /cos 2tefrndf

=2A;Af ' r co, 2rfoV

B Tuned-Circuit Spectrum

We assume here that the intensity spectrum of the random

noise bas the same form -s the response characteristic of a

oingle-tuned resonant circuit. Noise having this spectrum may

be generated by passing wide-band noise through a single-tuned-

circuit filter. We shall first examine the analytic expression

for the response characteristics of such filters in order to

show how our definitions apply to series and parallel resonant

circuits,

Series Resonan Circuitz We consider first the series

resonant circuit of Fig, A2.1. The ratio of the output voltage

to the input voltage is

-?



The intensity response spectrum0

is ) iven by the 4bsolute value

-h , square of the expressiona Flg, A?,4 43riasResonant Circuit,.

2w ( ,) -i - s

i (WL - OC) 2 "

W- .rzri uce the t o rarameters, W., the resonant frequen.cy, and.

;re ,r,,inir onsta-nt, defined by

rE-~ros~ tecr~may, then be

22

w --2) +42 * (222 )

! s tE rs-tn. to note that the soectral response of the
l~c-.uit of the config-

: r a c n w in Figk A2.2 is 1
,f the same form., It is oftenRC eo
valid to assume that a constant LT

current is applied to the paral- 0

.el circuit, when it is used as Fig. A2.2 Parallel Resonant

ak, fiiteri the ratio of tie output Circuit of One Type,

voltage to the constant input current

e a1

We again define the parameters %0 arnd y thisl time defined by
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2 = I/AC and -a 1/2'C.
o

The intensity response spectrum is then

which, except for the factor R,2 is of the same form as Eq.

(A2.2.). (It must be remembered that the resDonse spectrum

of a parallel circuit having the resistance in series with the
Inductance ;I 2 I g j _ this case, which we shall

ciall the parallel resonant case in agreement with the literature,A2

vill be discussed briefly at the end of this appendix.)

Spet P_ Leiest, We shall first exazine some of the

properties of the series-resonant tuned-circuit spectrum of

Eq (A2.,2), The frequency of -maximum. response is found by solv-

ing the equation

2() 2_c .2~) 2 4 4 4 2 2 2

The solution is eastily seen to be w m wo the angular frequency
If ,maxizut resporse Is WO regardless of the Q of the Cercuit,

The ,au:Imum va-lue of W(W) is W( o ) w I. Parameters which are

a convenient meaiure of the bandwi4th of the spectrum are the

two"half-power" points obtained from 1q (A2,2) when

w(w) - i(O o)

or

2 2
h o 4d~

The solutions of this equation are

oh 0 F
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The damping constant y is equal to the angalar half-bandwidth
fox all values of Qc However, for low-Q circuits the frequency

of maximum response is not midway, between the two half-power

polnts.o The Q of a series eircuit is defined as the ratio of
the series reactance of either reactor at 'resonance to the

series resistance. For the circuit of Fig, A2.19

The total angular frequency band iidth between thp half-power

P01frits A's

Anaytic.al Properties of 7 ?actortr'g the denominator

of Eq (A2. 2) r e can 'rr!e W(w) a- , sa , partial fractions..4

B _ 41

(A2o.3)

'T here W V - and the quantitiesz A, B1 Q and D are given

B F- F

The function W(w) has', in general four pole in the complex c-plane,

The locitions of these poles are indicated by the denominators of

the fractions in Eq (A,2,3) and are plotted in Fig. A2,3. It will

be noted thatfor W P < W the four. poles are symmetrically lo-

cated on the circle IW1 = W When W F is ecual to W (Q - 1/2) the

four simple poles merge into two second order poles at w= + jW .
A's W F is increased further (Q < 1/2) the two second-order poles

split into four simple poles, all lying on the imaginary

axis,. As wF increases from w. to x.9 two of these poles move
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7 7 -

f rom the points _+ Jw townrd the oxrln, while the othtkr two

mve r om 

- - n-

.2CcMex w.Plane Show-ng Loatioon of
PFo',-s of F1 nctlon W(w ). Arrows Show Motion of

, Thr e ,-srni~n ?Lel

A'u4tocorretlaion rua(nct. With the above ilformritlon we

r& now rpady to evaluate the aiutocorre tor fnretion of foi ..

,:vin the Intensity spectrumn of Er> (a2.2) in, order to ob-

thin the normalized autoorrelation flinction p(,i) we shall 3sioly

&va.ua,'e E (1 .I0) and normalize the result (so that p(O) - I)

Since W S(4 J. an even function I:Eq (A2,2)], it is possible to

ate
OD

We will evaluate the above only for z positive-, since

R- - R(10, (. 5)

becauSe R(T) is an autocorrelation fthuctlon.

Case I 0 < W < , In this case the integral of Eci (A 14)

is easily evaluated by means of a contour integral along ii path



TM27 ~'8

nontairiing the real axis and a large semicircle around the

up- er half-plane- Then for 'V> 0..

R~~t)- 2F 5 ~~-

U L Fn'5

Yoprr top- t)mlin 7 ~ rfv fft4J Al .fn4t

PT wO, f -n f

+ li

MY~ ro~ tAlso brtA don by> vtor in-hon W w9 find~th.a

that -
9%~0 19 # ', 7_ hU' t

j~ ~d
~ t~ir .y , M ~ sA~ Qf

Theri ,for4, for-/2
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P(.) ,- z-.lzl 3 e (A28)

Case III- % < For very low-Q circuits the contour

integral is again useful. In fact, the integral evaluated for

Case I above may again be used if we note that W', as defined

by

o "

is now an imaginary number. Defining a new parameter

.63 A0 0

we find, without further ado

p(t) -e" It [cosh 01 T- slinh 0'1 it 3

(A2.9)

Parallel Resonant Circuit - The correlation functions for the

medium and low-Q cases derived above correspond only to response

spectra of the circuits of Figs. A2,1 and A2.2, If, for example.,

the circuit is a parallel resonant 0

circuit of the form shown in Fig

A24, the intensity response .

spectrum is of the formn C e0

Wp P22 2 (A2,10) Fig, A2.4- Usual Parallel
4. qResonant Circuit Configu-o ration.

where (02 1/LC and R"/2L. The normalized autocorrelation

function of random noise having the spectral intensity given by

Eq. (A2.10) has been computed by the same methods as in the pre-

vious example. The results are

%()2 - J ,2

p(L) = eF) cos(A2,-1s
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p~t) a 2- -----
2) o f< t 1/2

and

U)Oj (44 + W)2) li

Wjn~is vcary III)c rq 2 il aso reduces -t Eq., (A?2

Pte zperse curves, Lot' the series andI pin 'liei, resonant cir-
'u.. ts are~ pre*!sftnt*~i grtttcalj In. -the litera ture ' 4 Norzal-
ized 04 'plc tio.,q functions for roithe having the ctorrezpon-dtg

wt~r~ ire plotted i , A?5p 42 tor v-#ricour veu~Of
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Q 41, the tvo curves are practically identical.
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Appendix II I

CORRELATION FUNCTIONS OF THE OUTPUT

OF A FULL-WAVE, V TH-LAW DETECTOR

by

David Middleton and Noel Stone

te dynamic response of a full-wave, th nonlinear

device may be represented by

(A3.1)

where I(t) is the instantaneous input disturance, correspond-

ing to the input wave V(t), and 0 is an appropriate scale fac-

tor. As has been shown elsewhere,15 the full-wave relation

(A3.1) may be expressed in terms (more convenient for analyt-
ical purposes when V(t) consists of a signal and noise) of a

(complex) Fourier transform by

I(t) . cf f(15) i V(t) +*Jrv(t) dj (A3.2)

where C is a contour extending along the real axis from -a to

+ e and indented downward in an infinitesimal semicircle about

a possible singularity at 0 0. Here f(iJ) is the (complex)

Fourier transform of the dynamic characteristic g(v), which is

calculated in this instance from

f(I) -lg¢V)o'iVdv , () < 0.

Specifically, one readily finds here that for (43.1),
f~ ) -0F' )().vl (14)

-81-
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The autocorrelation fhnction of l(t) isi6

R(t) =<7(t1 )I(t 2 )> stato av. = ff f(4 lf(i2).

(A3.5)

where the statistical average is taken over the random por-

tions of the input (V(t)) and the time-average over the

phases of the signal, if it is periodic. If it is not, as

is frequently the case here, when the signal portion of 'V(t)

is itself a noise wave, this time average is replaced in the

usual manner by an additional statistical average, it being

assumed here that there is no correlation between signal and

noise, in any case. Equation (A3.5) may be somewhat simplified,
to

11 (t) " 2- / f(il)f(i 2)[F2(Ul,32;t)v
C

(A3.6)
+ F2(-''J 2 t)VJdld32 ,

in which F2 is the characteristic Lum iLp (ioe., the Fourier
transform of the probability density W2 (Vl,V2 t) of the input

wave V(t). (For the V(t) assumed here, the following symmetry

properties of 2 are. easily established:

(A3.7)

stationary ergodic ensembles are also assumed throughout.]

Let us now determine Rl(t) for a variety of input waves
V(t)o We summarize below some of the principal results:

I. V(t) - noise alone:,

For normal random noise the characteristic function F2 24
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associated with the second-order probability density W2 (VIV 2;t)sA6

F2(5I 92t)v = e2 (A3.8)

where *(t) = fp(t) is the autocorrelation function of the input

noispV(t), p(t) is the normalized correlation function; and

= V2 . (It is assumed that <V> 0.) From (A3.6) we get

RI(t) = r(V+) 2 A2  (il)-Vli2)vl

Tr C P C t ( 2 + 2 )

2 2n

4 (2n)' *o 2n ' CA3.9)

where the amplitude functions ho,2n are

si-Vl_ e-2/2 2n-v-ld;9 (A310)
0 ,2n r

-(lj)np(_v,) 2n+ v/ 2* 2 nKl/ifir
n 2 2

in which (a)n = a(a+l) - (a+n-l), (a) = 1. The final result isA7

Rt) 2"*) v 02 f"( v1 ) 2 2F1 v/2,- v/2, 1/2",p 2(t))

and (l/2)n = (2n) V 22nn '

II. V(t) = sum of two statistically independent noise waves:

For the problem considered in Chapter IV of this report, we

wish to determine the autocorrelation function of our v th law,

full-wave rectifier when the input V(t) = VN  + VN , i.e., is

the sum of two, uncorrelated noise voltages. I The 2 characteristic
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function F2 in (A3.6) now factors into the product of the two

characteristic functions of V and VN21 vlz,

F 2(51 , ;2 ;t ) V  - 2( 1,5 2 Wt N 1 o F 2 (,rlJ, t) N2

1  (A3.12)

2

* •+- 1p1()+ 2P2(t)J V112

this last for normal random noise such that <V > * 0.

As before, Eef. (A3.8), <V W2> *1, <V W2> *2' ots. Lot-
ting

GL f! p(,'O) (A3.13)

be the input "signal"-to-noise ratio (V 1x represents a "noise"

signal), and following the procedure of ?A3.9), we can write here

11(t) w 4 ' .,((t)+p 2(t)]2nh 2, (A3.14)

where now h o 2n is given by (A3.10) if * a* + * 2 - *1(1+p ).

For identical spectral jh j (but different total intensities)

the goeneral expression (A3.14) simplifies somewhat to

( M M 4 ,2n ! 2 f(l+)2n A3.15a)
RI-v/2 = t1n

- (2*0+(14 j rI±.!1)2 : (~,)9pt2

since p,(t) = p2 (t) - p(t) under this assumption. In the came

of weak signals, i.e., p2 < 1, this reduces still further to



R t) (2*1j1+p))

+PA '(1) r -v2

(Al 16 t,
27!Ilar techniques m~ay be i~sed for other types of jignals; for

~t~~ssee Refs. A5 and A6. Note here that we have obt~ine4 a

7c-rict and Reneral result, Rood for all values of v? 0. Those

resdts n~ay now be insprted directly Into Sq. (4#4) and the out-
~:sinal-to-roise ratios computed, as Indicated (Eqs. (4.11)

at 54.q1 for the various types of smoothing filters and corre-
,-tion "unctions P(t) considered in this report.

?1.ho1 R. V. 3ignal-to-N atio in ro eI tt
~. . ~. i6 oesearch Laboratory of Blectronics Massacu

setts Tnstitute of Technology, Cambridge, 1assachusetts
7P bruary 19, 1951).

' ruft Laboratcory Staff Harvard University §Igroi
C:ircuits and Thiubes, Mcaraw-Hill, New York ?l947).

De~aan. D. Bierens, jouvelles Tables D' t~gae D~fings,
S. 3. 3techertl Few York 13) al 7,N&U

ruft Laboratory Staff, supra, Figs. 10.2, 14.1, 15.1, 15.2,
arid 16. 1.

A5,J Technical Apport from Cruft Laboratory, Harvard University,
by Noel Stone and D. I'iddleton (in preparation) 1952.

A.D. Middleton "Some General Results in the Theory of Noise
through Won-Linear Devices," ur.Ap. .Math. 1, 445
(1948). For a general accountof th-W"chara c teristic
function" method used above, see in particular sections
2-4 of this paper. See also, "Noise and Non-Linear
Communication Problems it p. 4, Svmosium on A ~lcation
of Autocorrelation Anal sis to Physca Problms Wo00ds
Hole, Vassachusetts Ju-ne 11-14 149. Pub ished by
ONR, 9 ashington.D. C. (May, 1956).

k7. Reference A6, Eq. (7.5) without the odd-order terms in
P(t). ,",or further details, see Ref. A5.
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